NeuroNex: From Odor to Action: Discovering Principles of Olfactory-Guided Natural Behavior

NeuroNex:从气味到行动:发现嗅觉引导自然行为的原理

基本信息

  • 批准号:
    2014217
  • 负责人:
  • 金额:
    $ 1700万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The Odor2Action network consists of 16 investigators from 16 research institutions in the United States, the United Kingdom, and Canada. The composition and scientific goals of the effort are designed to leverage prior investments in neurotechnologies funded by the BRAIN Initiative, other domestic agencies and international partners. Specifically, Odor2Action will address a central question of neuroscience: How do animals use information from odor stimuli in their environment to guide natural behaviors? To synergistically study this problem, the network is subdivided into three interdisciplinary research groups (IRGs); each IRG contains experts in a wide range of experimental and theoretical approaches, and investigates how similar problems are solved by nervous systems in phylogenetically diverse species. IRG1 will test a novel framework for organizing olfactory stimulus space and olfactory codes around the statistical relationships among natural odors. IRG2 will work to understand how neural circuits translate odor signals into dynamic and adaptive behaviors, a critical component of our overall network goal of understanding how natural odors trigger natural behaviors. IRG3 will investigate the physical structure of odor environments and how animal motion and sensory capabilities interact with those environments to detect, discriminate and localize odor objects. Collectively, the network will determine how neural representations of odor are generated, how they are progressively reformatted across successive circuit layers, and how they support useful behaviors. While focusing on olfaction, this project will provide broad and fundamental insights into brain function. This compact circuit architecture associated with olfaction offers unique opportunities to achieve an end-to-end understanding of the core computational logic by which various brains organize and read out such high-dimensional, discrete variables to generate adaptive behaviors. This coordinated project on the neuroscience of olfaction across species will have important societal impacts in science, technology, health, and policy. Given the complexity and high dimensionality of chemical space and its primacy in driving behavior among most species, studying how odor leads to action promises to provide insight into optimal biological solutions for encoding complex information about the external world. Elucidating biological solutions to olfaction can inform the development of algorithms and engineered devices for detection and identification of chemicals in applications that span the range from homeland security to food safety.The Odor2Action network will address a central question of neuroscience: How do animals use information from odor stimuli in their environment to guide natural behaviors? The network will approach this problem in the context of olfactory-guided behavior as an instance of a much more general problem of many complex brain systems - how are high-dimensional, discrete, and combinatorial variables that are not simply ordered along easily discernible axes represented in brain circuits and mapped to actions? The compact olfactory circuit architecture offers unique opportunities to achieve an end-to-end understanding of the core computational logic by which brains organize and read out such high-dimensional, discrete variables to generate adaptive behaviors. This network will study olfactory systems of mammals and insects, which have independently evolved common structural elements at successive levels of olfactory processing in their central nervous systems. These common elements possibly reflect convergent evolution towards a set of similar solutions to shared olfactory problems. The network comprises three interdisciplinary research groups (IRGs) that are designed around specific elements of an end-to-end investigation of olfaction. IRG1 aims to understand the first stages of how neural representations of odor are generated, and how they are progressively reformatted across successive circuit layers to support meaningful behaviors. IRG2 aims to understand how neural circuits translate odor signals into dynamic and adaptive behaviors, a critical component of our overall network goal of understanding how natural odors trigger natural behaviors. IRG3 will investigate the physical structure of odor environments and how animal motion and sensory capabilities interact with those environments to detect, discriminate and localize odor objects. Each IRG integrates theory and experimental approaches in two or more species in ways that produce complementary, synergistic interactions across levels of biological analysis. This Neuronex award is co-funded by the Division of Emerging Frontiers and the Behavioral Systems Cluster within the Directorate for Biological Sciences, the Office of Advanced Cyberinfrastructure within the Directorate for Computer and Information Sciences, the Mathematical Biology Program and the Physics of Living Systems Program within the Directorate for Mathematical and Physical Sciences, as part of the BRAIN Initiative and NSF's Understanding the Brain activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Odor 2Action网络由来自美国、英国和加拿大16个研究机构的16名研究人员组成。这项工作的组成和科学目标旨在利用由BRAIN Initiative,其他国内机构和国际合作伙伴资助的神经技术的先前投资。具体来说,Odor 2Action将解决神经科学的一个核心问题:动物如何使用来自环境中气味刺激的信息来指导自然行为?为了协同研究这个问题,该网络被细分为三个跨学科研究小组(IRG);每个IRG都包含广泛的实验和理论方法的专家,并研究神经系统如何解决类似的问题。IRG 1将测试一种新的框架,用于围绕自然气味之间的统计关系组织嗅觉刺激空间和嗅觉代码。IRG 2将致力于了解神经回路如何将气味信号转化为动态和自适应行为,这是我们理解自然气味如何触发自然行为的整体网络目标的关键组成部分。IRG 3将研究气味环境的物理结构,以及动物的运动和感觉能力如何与这些环境相互作用,以检测,区分和定位气味对象。总的来说,该网络将确定气味的神经表征是如何生成的,它们如何在连续的电路层中逐渐重新格式化,以及它们如何支持有用的行为。在专注于嗅觉的同时,该项目将提供对大脑功能的广泛和基本的见解。这种与嗅觉相关的紧凑电路架构提供了独特的机会,可以实现对核心计算逻辑的端到端理解,各种大脑通过这种核心计算逻辑组织和读出这种高维离散变量,以产生自适应行为。这个关于跨物种嗅觉神经科学的协调项目将在科学,技术,健康和政策方面产生重要的社会影响。鉴于化学空间的复杂性和高维性,以及它在大多数物种中驱动行为的首要地位,研究气味如何导致行动,有望为编码有关外部世界的复杂信息提供最佳生物解决方案。阐明嗅觉的生物解决方案可以为从国土安全到食品安全等应用中化学物质检测和识别的算法和工程设备的开发提供信息。Odor 2Action网络将解决神经科学的一个核心问题:动物如何使用来自气味的信息刺激他们的环境来指导自然行为?该网络将在嗅觉引导行为的背景下处理这个问题,作为许多复杂大脑系统的一个更普遍问题的实例--高维、离散和组合的变量,不是简单地沿着沿着容易识别的轴排列,它们是如何在大脑回路中表示并映射到动作的?紧凑的嗅觉电路架构提供了独特的机会,以实现对核心计算逻辑的端到端理解,大脑通过该核心计算逻辑组织和读出这种高维离散变量以产生自适应行为。该网络将研究哺乳动物和昆虫的嗅觉系统,这些系统在其中枢神经系统的嗅觉处理的连续水平上独立进化出共同的结构元件。这些共同的元素可能反映了趋同的进化,朝着一套类似的解决方案,共同的嗅觉问题。该网络由三个跨学科研究小组(IRG)组成,这些小组围绕嗅觉端到端调查的特定元素而设计。IRG 1旨在了解气味的神经表征如何产生的第一阶段,以及它们如何在连续的电路层中逐渐重新格式化以支持有意义的行为。IRG 2旨在了解神经回路如何将气味信号转化为动态和适应性行为,这是我们理解自然气味如何触发自然行为的整体网络目标的关键组成部分。IRG 3将研究气味环境的物理结构,以及动物的运动和感觉能力如何与这些环境相互作用,以检测,区分和定位气味对象。每个IRG将理论和实验方法集成在两个或更多个物种中,以产生跨生物分析水平的互补,协同相互作用的方式。这个Neuronex奖是由生物科学理事会内的新兴前沿和行为系统集群部门,计算机和信息科学理事会内的高级网络基础设施办公室,数学生物学计划和数学物理科学理事会内的生命系统计划物理共同资助的,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Drift in a popular metal oxide sensor dataset reveals limitations for gas classification benchmarks
  • DOI:
    10.1016/j.snb.2022.131668
  • 发表时间:
    2022-03-15
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Dennler, Nik;Rastogi, Shavika;Schmuker, Michael
  • 通讯作者:
    Schmuker, Michael
Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli.
  • DOI:
    10.1038/s41467-022-32267-3
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Zhu, Kevin W.;Burton, Shawn D.;Nagai, Maira H.;Silverman, Justin D.;de March, Claire A.;Wachowiak, Matt;Matsunami, Hiroaki
  • 通讯作者:
    Matsunami, Hiroaki
Odor encoding by signals in the olfactory bulb
  • DOI:
    10.1152/jn.00449.2022
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Verhagen,Justus V.;Baker,Keeley L.;Rolls,Edmund T.
  • 通讯作者:
    Rolls,Edmund T.
Information about space from time: how mammals navigate the odour landscape
时间与空间的信息:哺乳动物如何驾驭气味景观
  • DOI:
    10.1515/nf-2022-0006
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ackels T
  • 通讯作者:
    Ackels T
A topological approach to inferring the intrinsic dimension of convex sensing data
推断凸传感数据内在维度的拓扑方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Crimaldi其他文献

Correction to: Active sensing in a dynamic olfactory world
  • DOI:
    10.1007/s10827-021-00803-7
  • 发表时间:
    2021-12-02
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    John Crimaldi;Hong Lei;Andreas Schaefer;Michael Schmuker;Brian H. Smith;Aaron C. True;Justus V. Verhagen;Jonathan D. Victor
  • 通讯作者:
    Jonathan D. Victor
Active sensing in a dynamic olfactory world
  • DOI:
    10.1007/s10827-021-00798-1
  • 发表时间:
    2021-09-30
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    John Crimaldi;Hong Lei;Andreas Schaefer;Michael Schmuker;Brian H. Smith;Aaron C. True;Justus V. Verhagen;Jonathan D. Victor
  • 通讯作者:
    Jonathan D. Victor

John Crimaldi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Crimaldi', 18)}}的其他基金

Collaborative Research: Olfactory Navigation: Dynamic Computing in the Natural Environment
合作研究:嗅觉导航:自然环境中的动态计算
  • 批准号:
    1555862
  • 财政年份:
    2015
  • 资助金额:
    $ 1700万
  • 项目类别:
    Continuing Grant
Collaborative Research: A framework to characterize inhalant siphon flows of aquatic benthos
合作研究:表征水生底栖动物吸入虹吸流的框架
  • 批准号:
    1260199
  • 财政年份:
    2013
  • 资助金额:
    $ 1700万
  • 项目类别:
    Continuing Grant
Coral Fertilization as a Model System for Reactive Stirring and Mixing in Free-surface Turbulent Flows
珊瑚施肥作为自由表面湍流中反应搅拌和混合的模型系统
  • 批准号:
    1205816
  • 财政年份:
    2012
  • 资助金额:
    $ 1700万
  • 项目类别:
    Continuing Grant
Physical-Biological Interactions in the Fertilization Ecology of Broadcast Spawners: The Role of Gamete Traits and Turbulence Structure
广播产卵器受精生态中的物理生物相互作用:配子性状和湍流结构的作用
  • 批准号:
    0849695
  • 财政年份:
    2009
  • 资助金额:
    $ 1700万
  • 项目类别:
    Standard Grant
Collaborative Research: The Role of Flocculent Organic Sediment Transport as a Feedback Mechanism that Controls Landscape Dynamics and Restoration Success in the Everglades
合作研究:絮状有机沉积物输送作为控制大沼泽地景观动态和恢复成功的反馈机制的作用
  • 批准号:
    0732211
  • 财政年份:
    2007
  • 资助金额:
    $ 1700万
  • 项目类别:
    Continuing Grant
A Laminar Flow Facility with Laser-based Visualization for Enhancing Undergraduate Fluid Mechanics Instruction
具有基于激光可视化的层流设施,用于加强本科流体力学教学
  • 批准号:
    0411257
  • 财政年份:
    2004
  • 资助金额:
    $ 1700万
  • 项目类别:
    Standard Grant
CAREER: The Role of Turbulence Structure in Broadcast Spawning: Exploring Physical-Biological Relationships Through an Integrated Research and Education Program
职业:湍流结构在广播生成中的作用:通过综合研究和教育计划探索物理-生物关系
  • 批准号:
    0348855
  • 财政年份:
    2004
  • 资助金额:
    $ 1700万
  • 项目类别:
    Continuing Grant
An Interactive Water Flume with Laser-Based Flow Visualization For Improving Undergraduate Fluid Mechanics Instruction
具有基于激光流动可视化的交互式水槽,用于改善本科流体力学教学
  • 批准号:
    0126842
  • 财政年份:
    2002
  • 资助金额:
    $ 1700万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemical Orientation in Turbulent Environments Above Natural Stream Substrates: The Role of Bed Roughness and Turbulence Structure on Search Mechanisms
合作研究:自然溪流基底上方湍流环境中的化学取向:床层粗糙度和湍流结构对搜索机制的作用
  • 批准号:
    0131553
  • 财政年份:
    2002
  • 资助金额:
    $ 1700万
  • 项目类别:
    Continuing Grant

相似海外基金

NCS-FR: Insect-based brain-machine interfaces and robots for understanding odor-driven navigation
NCS-FR:基于昆虫的脑机接口和机器人,用于理解气味驱动的导航
  • 批准号:
    2319060
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
    Continuing Grant
Development of a new production technology for solid fertilizer materials using odor-derived nitrogen as a raw material
以臭气氮为原料的固体肥料原料生产新工艺开发
  • 批准号:
    23K19333
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Odor memory and functional neuroimaging in cognitively impaired older adults and Alzheimer's disease
认知障碍老年人和阿尔茨海默病的气味记忆和功能神经影像
  • 批准号:
    10590472
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
Holographic microscopy sheds light on the mechanism of odor information integration in the olfactory cortex
全息显微镜揭示了嗅觉皮层气味信息整合的机制
  • 批准号:
    22KJ1544
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Food odor improvement by coupling reaction of fungal amine oxidase and bacterial aldehyde oxidase.
通过真菌胺氧化酶和细菌醛氧化酶的偶联反应改善食品气味。
  • 批准号:
    23K02002
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of SERS substrate made of melt-blown non-woven fabric and its application to odor sensors
熔喷无纺布SERS基底的研制及其在气味传感器中的应用
  • 批准号:
    23K03881
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterizing odor motion detection in flies
描述苍蝇气味运动检测的特征
  • 批准号:
    10717167
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
Odor Coding in the Dorsal Tenia Tecta
背侧腱索的气味编码
  • 批准号:
    10735102
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
A New Genetic Expression System to Determine the Odor Tuning of Insect Vector Ionotropic Receptors Sensitive to Human-Derived Odorants
一种新的基因表达系统,用于确定对人类来源的气味敏感的昆虫载体离子型受体的气味调节
  • 批准号:
    10726203
  • 财政年份:
    2023
  • 资助金额:
    $ 1700万
  • 项目类别:
Artificial Olfactory Sensor Device Inspired by Odor Data Processing in Biosystem
受生物系统气味数据处理启发的人工嗅觉传感器装置
  • 批准号:
    22H01903
  • 财政年份:
    2022
  • 资助金额:
    $ 1700万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了