Dimension of multivariate selfsimilar processes

多元自相似过程的维数

基本信息

项目摘要

Selfsimilar stochastic processes are characterized by invariance of their distributions under space-time scaling transformations. In many areas these processes have proved their importance for modeling random dynamical behavior with selfsimilarity properties. For multivariate selfsimilar processes a spacial scaling with linear operators provides the highest degree of flexibility in modeling. Additionally, for selfsimilar random fields an operator scaling can be introduced in the time domain. In these cases the scaling operators are characterized by an exponent which is itself a linear operator. The research project is concerned with dimension results for operator selfsimilar processes and operator selfsimilar random fields. As a significant generalization of previous results, we aim to give a full characterization of the Hausdorff dimension for sample paths of operator selfsimilar processes and operator selfsimilar random fields with stationary increments. Since the Hausdorff dimension is well understood as a measure of roughness, the proposed results give valuable information on the local behavior of sample paths within the studied class of processes. Important examples of processes belonging to this class are operator fractional Brownian motions. To go even more into the fine structure of local sample path behavior, we further aim to give exact Hausdorff measure functions for operator selfsimilar Lévy processes. The proposed dimension formulas do only depend on the real parts of the eigenvalues of the selfsimilarity exponent and are likely to hold even for the weaker scaling property of operator semi-selfsimilarity. In view of applications, an efficient estimation procedure for the real parts of the eigenvalues is of great importance. A further aim of the project is to extend a consistent estimation procedure for these parameters to be applicable for operator selfsimilar random fields. At present, the procedure is valid for general operator semi-selfsimilar processes and we further aim to give rate of convergence results.
自相似随机过程的特点是在时空尺度变换下其分布不变性。在许多领域中,这些过程已经证明了它们对具有自相似特性的随机动力学行为建模的重要性。对于多变量自相似过程,线性算子的空间尺度提供了最高程度的建模灵活性。此外,对于自相似随机场,可以在时域中引入算子缩放。在这些情况下,标度算子的特征在于指数本身是线性算子。研究了算子自相似过程和算子自相似随机场的维数结果。作为以前结果的一个重要推广,我们的目标是给出算子自相似过程和算子自相似平稳增量随机场样本路径的Hausdorff维数的一个完整刻画。由于Hausdorff维数被很好地理解为粗糙度的度量,因此所提出的结果提供了关于所研究的过程类内的样本路径的局部行为的有价值的信息。属于这类过程的重要例子是算子分数布朗运动。为了更深入地研究局部样本路径行为的精细结构,我们进一步给出了算子自相似Lévy过程的精确Hausdorff测度函数。所提出的维数公式只依赖于自相似指数的特征值的真实的部分,即使对于算子半自相似的较弱标度性质也可能成立。从应用的角度看,特征值的真实的部分的有效估计过程是非常重要的。该项目的另一个目的是扩展这些参数的一致估计程序,以适用于运营商自相似随机场。目前,该方法对一般的算子半自相似过程是有效的,我们的目标是进一步给出收敛速度的结果。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On exact Hausdorff measure functions of operator semistable Lévy processes
算子半稳定 Lévy 过程的精确 Hausdorff 测度函数
Hausdorff dimension of the graph of an operator semistable L\'evy process
算子半稳定 Levy 过程图的豪斯多夫维数
  • DOI:
    10.4171/jfg/43
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wedrich
  • 通讯作者:
    Wedrich
Asymptotic Behavior of Semistable Lévy Exponents and Applications to Fractal Path Properties
半稳定 Lévy 指数的渐近行为及其在分形路径性质中的应用
The Hausdorff dimension of multivariate operator-self-similar Gaussian random fields
  • DOI:
    10.1016/j.spa.2017.05.003
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ercan Sonmez
  • 通讯作者:
    Ercan Sonmez
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Peter Kern其他文献

Professor Dr. Peter Kern的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Peter Kern', 18)}}的其他基金

Cystic echinococcosis in sub-Saharan Africa Research Initiative (Epidemiology and clinical implications of the genetic diversity of Echinococcus spp. in eastern and southern Africa)
撒哈拉以南非洲囊型包虫病研究计划(东部和南部非洲棘球蚴属遗传多样性的流行病学和临床意义)
  • 批准号:
    271533100
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Epidemiology and clinical implications of the genetic diversity of Echinococcus spp in Sudan, Kenya, Uganda and southern Africa
苏丹、肯尼亚、乌干达和南部非洲棘球蚴属遗传多样性的流行病学和临床意义
  • 批准号:
    215051603
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Epidemiology and clinical implications of the genetic diversity of Echinococcus spp in Sudan, Kenya, Uganda and South Africa
苏丹、肯尼亚、乌干达和南非棘球蚴属遗传多样性的流行病学和临床意义
  • 批准号:
    68830335
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Selbstähnliche Stochastische Prozesse auf Lie Gruppen
李群上的自相似随机过程
  • 批准号:
    5439065
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Persistenz von Echinococcus multilocularis Metazestoden in der Leber des Menschen: In-vitro- und In-vivo-Untersuchungen zur Modulation der Immunantwort durch den Parasiten
多房棘球绦虫在人肝脏中的持久性:寄生虫调节免疫反应的体外和体内研究
  • 批准号:
    5238936
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Transmission ecology and risk factors for cystic echinococcosis in sub-Saharan Africa
撒哈拉以南非洲地区囊型包虫病的传播生态学和危险因素
  • 批准号:
    444708621
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SEMA6D-mediated breast cancer disparity, metastasis, and tumor-immune interaction
SEMA6D 介导的乳腺癌差异、转移和肿瘤免疫相互作用
  • 批准号:
    10634959
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
  • 批准号:
    10704673
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genetic Architecture of Aging-Related TDP-43 and Mixed Pathology Dementia
衰老相关 TDP-43 和混合病理痴呆的遗传结构
  • 批准号:
    10658215
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cell Therapy Program with Scale-up cGMP Manufacturing of Human Corneal Stromal Stem Cells
细胞治疗计划,扩大人类角膜基质干细胞的 cGMP 生产
  • 批准号:
    10720562
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Polygenic Risk Scores for Alzheimer's Disease in Hispanic/Latinx Populations
西班牙裔/拉丁裔人群阿尔茨海默病的多基因风险评分
  • 批准号:
    10662781
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neurocognitive Foundations of Morphological Processing in Children with Dyslexia
阅读障碍儿童形态处理的神经认知基础
  • 批准号:
    10538156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了