EAGER: Plant membrane on-a-chip for the genome wide studies of plant transport processes

EAGER:芯片上的植物膜,用于植物运输过程的全基因组研究

基本信息

  • 批准号:
    2016107
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

Plant cells are surrounded by the plasma membrane that forms cellular boundaries and helps to maintain chemically distinct environments within and outside the cell. Membrane-based compartmentation allows different processes to occur simultaneously in different parts of the cell and in accordance with plant needs. These cellular processes ensure plant growth, development and response to environmental stresses and largely depend on ions and organic molecules redistribution across membranes. Most nutrients and metabolites cannot freely cross the membrane, so specific proteins, known as channels, pumps, and cotransporters, are embedded in plant membranes for this purpose. As scientists strive to understand how plants adapt to extreme weather conditions, pathogen pressures, and pollution, uncovering how these transport systems operate is important for devising sustainable approaches for improving crop yield and promoting flourishing ecosystems. In this project, a device is proposed that can take samples of plant cell membranes with embedded transport systems to test their response and properties to various conditions of interest. The device consists of a transparent, conductive plastic surface that measures the material that crosses the plant cell membrane in a highly controlled manner, allowing scientists to probe, and later connect, the responses of transport systems with the plant from which it was derived and the conditions under which that plant was grown. This project will also foster high school student excitement about career choices in agriculture and life science industries that involve biotechnology and applications in plants, food, and farming through Cornell’s WOMEN event.Monitoring the flux of solutes and ions across plant cell membranes through ion channels and transporters embedded within them, is a significant challenge today, but is fundamental for assigning function to unknown transporter genes, tackling transporter substrate specificities and mode of regulation, linking metabolic pathways to cellular compartments, plant growth and development, and bridging the genotype to phenotype gap. Today's technologies are inadequate for a number of reasons, including low throughput and lack of sensitivity, especially for transporters, which have fluxes several orders of magnitude lower than ion channels. Here, a new technology is proposed that combines planar plant membranes, microfluidic environmental control, and a transparent, electrically conducting polymer, comprising a “plant membrane bioelectronic device.” This device is capable of dual-mode (optical or electrical) measurement of transporter function. This new kind of sensor device can be highly multiplexed for collection of large data sets on plant transporter systems in a way that has not been possible before. Such large data sets feed into big data science approaches for enabling discoveries and breakthroughs in our understanding of how plants adapt to genetic perturbations, extreme weather conditions, pathogen pressures, and other critical aspects important for improving crop yield and promoting flourishing ecosystems. This project will also foster the next generation of high school students becoming excited about career choices in agriculture and life science industries that involve biotechnology and applications in plants, food, and farming through ongoing outreach activities that engage K-12 girls and their parents through Cornell’s WOMEN event.This award was co-funded by the Plant Genome Research Program and the Physiological Mechanisms and Biomechanics Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物细胞被质膜包围,质膜形成细胞边界,有助于维持细胞内外不同的化学环境。基于膜的区隔允许不同的过程同时发生在细胞的不同部分,并根据植物的需要。这些细胞过程确保了植物的生长、发育和对环境胁迫的反应,并在很大程度上依赖于离子和有机分子在膜上的再分配。大多数营养物质和代谢物不能自由地穿过膜,因此被称为通道、泵和共转运体的特定蛋白质被嵌入植物膜中以达到这一目的。随着科学家们努力了解植物如何适应极端天气条件、病原体压力和污染,揭示这些运输系统的运作方式对于设计提高作物产量和促进生态系统繁荣的可持续方法非常重要。在这个项目中,提出了一种装置,可以用嵌入式运输系统采集植物细胞膜样品,以测试它们对各种感兴趣条件的响应和特性。该装置由一个透明的导电塑料表面组成,它以一种高度可控的方式测量穿过植物细胞膜的物质,使科学家能够探测并随后将运输系统与植物产生的反应以及植物生长的条件联系起来。该项目还将通过康奈尔大学的妇女活动,培养高中生对农业和生命科学行业的职业选择的兴趣,这些行业涉及生物技术和植物、食品和农业的应用。监测溶质和离子通过离子通道和嵌入其中的转运体穿过植物细胞膜的通量是当今的重大挑战,但对于分配未知转运体基因的功能,解决转运体底物特异性和调节模式,将代谢途径与细胞室,植物生长和发育联系起来,以及弥合基因型与表型差距是至关重要的。由于一些原因,今天的技术是不够的,包括低通量和缺乏灵敏度,特别是对于转运体,其通量比离子通道低几个数量级。本文提出了一种结合平面植物膜、微流体环境控制和透明导电聚合物的新技术,包括“植物膜生物电子装置”。该装置能够双模(光或电)测量传输功能。这种新型传感器设备可以高度多路复用,以一种以前不可能的方式收集植物转运系统的大型数据集。这些大型数据集为大数据科学方法提供了支持,使我们能够在理解植物如何适应遗传扰动、极端天气条件、病原体压力以及其他对提高作物产量和促进生态系统繁荣至关重要的关键方面取得发现和突破。该项目还将培养下一代高中生对农业和生命科学行业的职业选择感到兴奋,这些行业涉及生物技术和植物、食品和农业的应用,通过正在进行的外展活动,让K-12女孩和她们的父母参与康奈尔大学的妇女活动。该奖项由植物基因组研究计划和生理机制和生物力学计划共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Daniel其他文献

Membrane protein synthesis: no cells required
膜蛋白合成:不需要细胞
  • DOI:
    10.1016/j.tibs.2023.03.006
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Zachary A. Manzer;Ekaterina Selivanovitch;Alexis R. Ostwalt;Susan Daniel
  • 通讯作者:
    Susan Daniel
Studying Fusion of Influenza to Supported Lipid Bilayers using Individual Virion Imaging Techniques
  • DOI:
    10.1016/j.bpj.2011.11.2332
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Deirdre A. Costello;Susan Daniel
  • 通讯作者:
    Susan Daniel
A reconstitutive platform for biophysical dissection of the Nipah virus fusion cascade
  • DOI:
    10.1016/j.bpj.2023.11.1517
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Sreetama Pal;Hector C. Aguilar;Susan Daniel
  • 通讯作者:
    Susan Daniel
Recreating the Biological Steps of Viral Infection on a Bioelectronic Platform to Profile Viral Variants of Concern
在生物电子平台上重现病毒感染的生物学步骤,以分析值得关注的病毒变体
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongmou Chao;Ekaterina Selivanovitch;K. Kallitsis;Zixuan Lu;Ambika Pachaury;Róisín M. Owens;Susan Daniel
  • 通讯作者:
    Susan Daniel
Impedance sensing of antibiotic interactions with a pathogenic emE. coli/em outer membrane supported bilayer
抗生素与致病性大肠杆菌外膜支持的双层膜相互作用的阻抗传感
  • DOI:
    10.1016/j.bios.2022.114045
  • 发表时间:
    2022-05-15
  • 期刊:
  • 影响因子:
    10.500
  • 作者:
    Surajit Ghosh;Zeinab Mohamed;Jung-Ho Shin;Samavi Farnush Bint E Naser;Karan Bali;Tobias Dörr;Róisín M. Owens;Alberto Salleo;Susan Daniel
  • 通讯作者:
    Susan Daniel

Susan Daniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Daniel', 18)}}的其他基金

NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
  • 批准号:
    2207688
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
I-Corps: Cell-free Biosensors
I-Corps:无细胞生物传感器
  • 批准号:
    2229505
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
2020 SynCell Meeting
2020 SynCell 会议
  • 批准号:
    2024029
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RAPID: Revealing the intermolecular interactions between the SARS-CoV-2/COVID-19 fusion peptide and the host cell membrane that underlie its flexibility in host tropism
RAPID:揭示 SARS-CoV-2/COVID-19 融合肽与宿主细胞膜之间的分子间相互作用,这是其宿主向性灵活性的基础
  • 批准号:
    2027070
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Uncovering the role of Golgi organization on function
合作研究:EAGER:揭示高尔基组织对功能的作用
  • 批准号:
    1935370
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Bio-nanomanufacturing of Protein Therapeutics Using Membrane Microfluidics
使用膜微流体的蛋白质治疗药物的生物纳米制造
  • 批准号:
    1728049
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Microbial Fuel Cell Optimization through Digital Microfluidic Electrochemistry in Single-Bacterial Drops
合作研究:通过单细菌液滴中的数字微流体电化学优化微生物燃料电池
  • 批准号:
    1605787
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ISS: Unmasking contact-line mobility for Inertial Spreading using Drop Vibration and Coalescence
国际空间站:利用液滴振动和聚结揭示惯性传播的接触线移动性
  • 批准号:
    1637960
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Viral coat protein arrays for rapid development and screening of anti-fusogenic antivirals against Ebolavirus
用于快速开发和筛选埃博拉病毒抗融合抗病毒药物的病毒外壳蛋白阵列
  • 批准号:
    1504846
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A Single Particle Imaging Approach for the Detection of Virus Phenotypes in a Mixture
用于检测混合物中病毒表型的单粒子成像方法
  • 批准号:
    1263701
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Journal of Integrative Plant Biology
  • 批准号:
    31024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Integrating membrane processes into hydroponics systems to promote plant growth, recover added-value root exudates and recycle nutrients
将膜工艺集成到水培系统中,以促进植物生长、回收增值根系分泌物并回收养分
  • 批准号:
    EP/X018660/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Conference: 7th Pan American Plant Membrane Biology Workshop, Merida, Mexico, June 18-21 2023
会议:第七届泛美植物膜生物学研讨会,墨西哥梅里达,2023 年 6 月 18-21 日
  • 批准号:
    2328521
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Deciphering Male- and Female-coordinated Gating Mechanisms that Ensure Plant Reproductive Success
破译确保植物繁殖成功的雄性和雌性协调的门控机制
  • 批准号:
    10735145
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Engineering Yeast Membrane Composition to Improve Microbial Host Cell Production of Plant Specialized Metabolites
改造酵母膜组合物以提高微生物宿主细胞生产植物特化代谢物
  • 批准号:
    575959-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigating the Effects of Plant Hormones on Intercellular Trafficking via Plasmodesmata
研究植物激素对胞间连丝运输的影响
  • 批准号:
    10538215
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
IntBIO: Coordinating and integrating whole-plant responses to abiotic and biotic stress signals via changes in plasma membrane proteomes
IntBIO:通过质膜蛋白质组的变化协调和整合全植物对非生物和生物胁迫信号的反应
  • 批准号:
    2217322
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Engineering novel designer biologics in plant cells for oral treatment of ulcerative colitis
在植物细胞中设计新型生物制剂用于口腔治疗溃疡性结肠炎
  • 批准号:
    10202300
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Developing a knowledge base of putative plant-sourced saposin-like proteins and assessing their membrane-perturbing and antimicrobial characteristics
开发假定的植物源皂苷样蛋白的知识库并评估其膜扰动和抗菌特性
  • 批准号:
    532538-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10430218
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Calcium coding mechanisms in plant cell growth and immunity
植物细胞生长和免疫中的钙编码机制
  • 批准号:
    10643897
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了