Bio-nanomanufacturing of Protein Therapeutics Using Membrane Microfluidics
使用膜微流体的蛋白质治疗药物的生物纳米制造
基本信息
- 批准号:1728049
- 负责人:
- 金额:$ 37.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The market for therapeutic proteins is valued near $140 billion annually. Many of these therapeutics are glycoproteins, which require the addition of specific sugars, called 'glycans' at an exact position on the protein through a process called protein glycosylation. The glycan affects protein folding and function and ensures it retains its therapeutic potency. In nature, glycoproteins are produced through a series of sequential reactions inside a cell. Making therapeutic glycoproteins within cells is challenging for a variety of reasons, and extensive and costly purification steps are required to harvest the therapeutic material. With this award, a cell-free glycosylation network will be constructed in a microfluidic device that separates reactions in space and time, giving supreme flexibility in optimizing individual reactions and constructing glycans with high specificity. The benefits of this manufacturing paradigm to society are reducing the cost of these drugs and providing scientists an avenue to design and develop synthetic drug compounds that may or may not exist in nature to treat disease. The related education plan creates a hands-on bio-nanomanufacturing activity for a high school girls organized by the PIs and their student trainees, so that young women will understand the power of biotechnology and be inspired to pursue these career paths. Cell-free protein synthesis holds great promise for producing high-value, biotherapeutic nanomaterials without cell culture and benefitting from chemical manufacturing know-how. Here, raw materials and biological enzymes are mixed to produce biological products. Shortcomings of this approach are competing reactions, side products, and low yields. Cells avoid these shortcomings by localizing reactions within subcellular compartments and orchestrating the reaction sequences. The biocatalysts that give the final molecule its essential posttranslational features are compartmentalized in membranes. Handling enzymes outside of their native lipid environment can drastically reduce their activity. Thus, in vitro, sequential, bio-enzymatic reactions have never been achieved in a cell-free manner. The research objective is to mimic the elegant compartmentalization strategies used by cells in a microfluidic biomembrane device that organizes biological reactions in proper spatial and temporal sequence. These devices will generate authentically glycosylated proteins. Through assessment of nanostructure product architectures, this work will advance understanding of nanoscale phenomena and processes for nanomaterials manufacture and discovery. This cell-free device concept will enable facile optimization of glycosylated protein production, and provide a framework for understanding how experimental conditions affect product yield and quality that is broadly applicable to the bio-nanomanufacturing of virtually any posttranslationally-modified protein.
治疗性蛋白质的市场价值每年接近1400亿美元。这些疗法中的许多都是糖蛋白,需要通过一种名为蛋白质糖基化的过程在蛋白质上的确切位置添加特定的糖,即所谓的“多糖”。多糖影响蛋白质的折叠和功能,并确保其保持其治疗效力。在自然界中,糖蛋白是通过细胞内的一系列连续反应产生的。由于各种原因,在细胞内制造治疗性糖蛋白是具有挑战性的,需要广泛而昂贵的纯化步骤来获得治疗性材料。获得该奖项后,将在微流控设备中构建无细胞糖基化网络,该设备将在空间和时间上分离反应,在优化个别反应和构建具有高度特异性的多糖方面给予极大的灵活性。这种制造模式给社会带来的好处是降低了这些药物的成本,并为科学家提供了设计和开发合成药物化合物的途径,这些化合物可能存在于自然界中,也可能不存在于治疗疾病的自然界中。相关的教育计划为高中女生组织了一项亲身实践的生物纳米制造活动,由私人投资机构及其学生实习生组织,让年轻女性了解生物技术的力量,并受到激励,追求这些职业道路。无细胞蛋白质合成在无需细胞培养和受益于化学制造技术的情况下生产高价值的生物治疗纳米材料具有很大的前景。在这里,原料和生物酶混合在一起生产生物制品。这种方法的缺点是竞争反应、副产物和低产率。细胞通过在亚细胞间隔内定位反应并协调反应序列来避免这些缺点。生物催化剂使最终的分子具有翻译后的基本特征,这些生物催化剂被分隔在膜中。在天然脂质环境之外处理酶会极大地降低它们的活性。因此,在体外,连续的生物酶反应从来没有以无细胞的方式实现过。该研究的目标是模仿微流控生物膜装置中细胞所使用的优雅的区隔策略,该装置以适当的空间和时间顺序组织生物反应。这些设备将产生真正的糖基化蛋白质。通过对纳米结构产品结构的评估,这项工作将促进对纳米材料制造和发现的纳米级现象和过程的理解。这种无细胞设备的概念将使糖基化蛋白质生产得到便捷的优化,并为理解实验条件如何影响产品产量和质量提供了一个框架,该框架广泛适用于几乎任何翻译后修饰蛋白质的生物纳米制造。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Daniel其他文献
Membrane protein synthesis: no cells required
膜蛋白合成:不需要细胞
- DOI:
10.1016/j.tibs.2023.03.006 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:11.000
- 作者:
Zachary A. Manzer;Ekaterina Selivanovitch;Alexis R. Ostwalt;Susan Daniel - 通讯作者:
Susan Daniel
Studying Fusion of Influenza to Supported Lipid Bilayers using Individual Virion Imaging Techniques
- DOI:
10.1016/j.bpj.2011.11.2332 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Deirdre A. Costello;Susan Daniel - 通讯作者:
Susan Daniel
A reconstitutive platform for biophysical dissection of the Nipah virus fusion cascade
- DOI:
10.1016/j.bpj.2023.11.1517 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Sreetama Pal;Hector C. Aguilar;Susan Daniel - 通讯作者:
Susan Daniel
Recreating the Biological Steps of Viral Infection on a Bioelectronic Platform to Profile Viral Variants of Concern
在生物电子平台上重现病毒感染的生物学步骤,以分析值得关注的病毒变体
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhongmou Chao;Ekaterina Selivanovitch;K. Kallitsis;Zixuan Lu;Ambika Pachaury;Róisín M. Owens;Susan Daniel - 通讯作者:
Susan Daniel
Impedance sensing of antibiotic interactions with a pathogenic emE. coli/em outer membrane supported bilayer
抗生素与致病性大肠杆菌外膜支持的双层膜相互作用的阻抗传感
- DOI:
10.1016/j.bios.2022.114045 - 发表时间:
2022-05-15 - 期刊:
- 影响因子:10.500
- 作者:
Surajit Ghosh;Zeinab Mohamed;Jung-Ho Shin;Samavi Farnush Bint E Naser;Karan Bali;Tobias Dörr;Róisín M. Owens;Alberto Salleo;Susan Daniel - 通讯作者:
Susan Daniel
Susan Daniel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Daniel', 18)}}的其他基金
NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
- 批准号:
2207688 - 财政年份:2022
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
RAPID: Revealing the intermolecular interactions between the SARS-CoV-2/COVID-19 fusion peptide and the host cell membrane that underlie its flexibility in host tropism
RAPID:揭示 SARS-CoV-2/COVID-19 融合肽与宿主细胞膜之间的分子间相互作用,这是其宿主向性灵活性的基础
- 批准号:
2027070 - 财政年份:2020
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
EAGER: Plant membrane on-a-chip for the genome wide studies of plant transport processes
EAGER:芯片上的植物膜,用于植物运输过程的全基因组研究
- 批准号:
2016107 - 财政年份:2020
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Uncovering the role of Golgi organization on function
合作研究:EAGER:揭示高尔基组织对功能的作用
- 批准号:
1935370 - 财政年份:2019
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Collaborative Research: Microbial Fuel Cell Optimization through Digital Microfluidic Electrochemistry in Single-Bacterial Drops
合作研究:通过单细菌液滴中的数字微流体电化学优化微生物燃料电池
- 批准号:
1605787 - 财政年份:2016
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
ISS: Unmasking contact-line mobility for Inertial Spreading using Drop Vibration and Coalescence
国际空间站:利用液滴振动和聚结揭示惯性传播的接触线移动性
- 批准号:
1637960 - 财政年份:2016
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Viral coat protein arrays for rapid development and screening of anti-fusogenic antivirals against Ebolavirus
用于快速开发和筛选埃博拉病毒抗融合抗病毒药物的病毒外壳蛋白阵列
- 批准号:
1504846 - 财政年份:2015
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
A Single Particle Imaging Approach for the Detection of Virus Phenotypes in a Mixture
用于检测混合物中病毒表型的单粒子成像方法
- 批准号:
1263701 - 财政年份:2013
- 资助金额:
$ 37.44万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Ionic liquids for subtractive and additive nanomanufacturing
用于减材和增材纳米制造的离子液体
- 批准号:
MR/Y034376/1 - 财政年份:2024
- 资助金额:
$ 37.44万 - 项目类别:
Fellowship
High yield adaptive laser nanomanufacturing system for photonic devices
用于光子器件的高产量自适应激光纳米制造系统
- 批准号:
LP210100467 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Linkage Projects
Mechanical nanolithography without solvents - a step towards sustainable nanomanufacturing
无溶剂机械纳米光刻——迈向可持续纳米制造的一步
- 批准号:
EP/W034387/1 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Research Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225900 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Carbon Nanotube-Mediated Gene Transfer into Human T-cells for CAR-T HIV Therapy
碳纳米管介导的基因转移到人类 T 细胞中用于 CAR-T HIV 治疗
- 批准号:
10601451 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225896 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
REU Site: Nanomanufacturing of Emerging 2D Materials and Devices
REU 网站:新兴 2D 材料和器件的纳米制造
- 批准号:
2244201 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:
Standard Grant
Enhanced CRISPR gene editing in pluripotent stem cells using carbon nanotube arrays
使用碳纳米管阵列增强多能干细胞中的 CRISPR 基因编辑
- 批准号:
10698269 - 财政年份:2023
- 资助金额:
$ 37.44万 - 项目类别:














{{item.name}}会员




