Resolving Twin-Slip Interaction Mechanisms in Hexagonal Close-Packed Metals

解决六方密排金属中的双滑移相互作用机制

基本信息

项目摘要

Deformation of hexagonal close-packed metals, such as magnesium and titanium, involves complex activities of defects in the crystal structure, called twins and dislocations, respectively. Multiple modes of twinning and dislocation slip in crystal planes can be activated, even under simple mechanical loading. Interaction between twin boundaries and dislocations strongly influences the mechanical properties of these metals, but the physics behind the interaction is not understood. This award supports fundamental research on modeling the twin-slip interaction mechanisms, which are difficult to be resolved experimentally. The research will enhance fundamental understanding of the mechanical behavior of important engineering materials, such as magnesium and titanium alloys, that have shown promise in improving energy efficiency in automotive and aerospace applications. Insights obtained from the research will also help design new generation of lightweight alloys with improved strength and ductility. Additionally, the project will promote education and diversity by facilitating integrated computational materials engineering education for undergraduate and graduate students and by engaging underrepresented groups in STEM activities.Twin-slip interaction in metals with hexagonal close-packed crystal structures plays a crucial role in the mechanical properties of these materials. Such interaction has been considered an important factor in the hardening behavior during plastic deformation, but the mechanisms remain largely unknown. Twin-slip interaction occurs on the atomic scale. According to classical theory of deformation twinning, a one-to-one lattice correspondence exists between the parent and the product phase. Thus, if a dislocation in the matrix is transformed into a dislocation in the twin, the slip planes before and after twin-slip interaction must be corresponding planes. These corresponding planes can be unambiguously identified with atomistic simulations. The project will use atomic scale simulations to resolve lattice transformations during interaction between various twinning modes and dislocation modes in magnesium and titanium. By analyzing lattice correspondence, the interaction mechanisms can be resolved with clarity. Conditions for dislocation transmutation and dislocation absorption at different twin boundaries can also definitively be established. And the results obtained can be further extended to other important engineering metals such as zirconium and cobalt alloys.This project is jointly supported by the Civil, Mechanical and Manufacturing Innovations Division in the Engineering Directorate, and the Division of Materials Research in the Mathematical and Physical Sciences Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
六方密排金属(如镁和钛)的变形涉及晶体结构中缺陷的复杂活动,分别称为孪晶和位错。即使在简单的机械载荷下,也可以激活晶面中的多种孪晶和位错滑移模式。孪晶界和位错之间的相互作用强烈影响这些金属的机械性能,但相互作用背后的物理机制尚不清楚。该奖项支持对双滑移相互作用机制进行建模的基础研究,这些机制很难通过实验解决。该研究将增强对镁和钛合金等重要工程材料机械行为的基本理解,这些材料在提高汽车和航空航天应用的能源效率方面表现出了希望。从研究中获得的见解也将有助于设计具有更高强度和延展性的新一代轻质合金。此外,该项目还将通过促进本科生和研究生的综合计算材料工程教育,以及让代表性不足的群体参与STEM活动,促进教育和多样性。具有六方密排晶体结构的金属中的双滑移相互作用在这些材料的机械性能中起着至关重要的作用。这种相互作用被认为是塑性变形过程中硬化行为的一个重要因素,但其机制在很大程度上仍然未知。双滑移相互作用发生在原子尺度上。根据变形孪晶的经典理论,在母体相和产物相之间存在一对一的晶格对应。因此,如果基体中的位错转化为孪晶中的位错,则孪晶滑移相互作用前后的滑移面必须是对应的面。这些对应的平面可以用原子模拟明确地识别。该项目将使用原子尺度模拟来解决镁和钛中各种孪生模式和位错模式之间相互作用期间的晶格转变。通过分析晶格对应,可以清楚地解决相互作用机制。还可以明确地建立在不同孪晶界处位错嬗变和吸收的条件。并且所获得的结果可以进一步扩展到其他重要的工程金属,如锆和钴合金。该项目由工程理事会的土木,机械和制造创新部门共同支持,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lattice transformation in grain boundary migration via shear coupling and transition to sliding in face-centered-cubic copper
  • DOI:
    10.1016/j.actamat.2021.117127
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Bin Li;Janel Leung
  • 通讯作者:
    Bin Li;Janel Leung
A half-shear-half-shuffle mechanism and the single-layer twinning dislocation for {112¯2}〈112¯3¯〉 mode in hexagonal close-packed titanium
  • DOI:
    10.1016/j.actamat.2021.117150
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Jingwei Li;Manling Sui;Bin Li
  • 通讯作者:
    Jingwei Li;Manling Sui;Bin Li
Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy
  • DOI:
    10.1016/j.actamat.2020.08.039
  • 发表时间:
    2020-10-15
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Bin Li;Shen, Yidi;An, Qi
  • 通讯作者:
    An, Qi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yantao Shen其他文献

In situ micro-force sensing and quantitative elasticity evaluation of living Drosophila embryos at different stages
果蝇活体胚胎不同阶段的原位微力传感和定量弹性评估
Inertial-Measurement-Unit (IMU) Based Motion Tracking for Biomorphic Hyper-Redundant Snake Robot
基于惯性测量单元 (IMU) 的仿生超冗余蛇形机器人运动跟踪
Quantification and Verification of Automobile Interior Textures by a High Performance Tactile-Haptic Interface
通过高性能触觉界面对汽车内部纹理进行量化和验证
Mind-controlled micro-biomanipulation with position sensing feedback: System integration and validation
具有位置传感反馈的意念控制微生物操纵:系统集成和验证
An efficient approach of handling and deposition of micro and nano entities using sensorized microfluidic end-effector system
使用传感微流体末端执行器系统处理和沉积微米和纳米实体的有效方法
  • DOI:
    10.1016/j.sna.2008.03.021
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    U. Wejinya;Yantao Shen;N. Xi;K. Lai;Jiangbo Zhang
  • 通讯作者:
    Jiangbo Zhang

Yantao Shen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yantao Shen', 18)}}的其他基金

Understanding Dislocation Motion and Plasticity via First Principles Simulations Towards Manufacturing of High Ductility Magnesium Alloys
通过高延展性镁合金制造的第一原理模拟了解位错运动和塑性
  • 批准号:
    2032483
  • 财政年份:
    2020
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant
REU Site: Biomimetic and Soft Robotics (BioSoRo): from Biological Inspirations to Engineered Mechanisms
REU 网站:仿生和软机器人 (BioSoRo):从生物学灵感到工程机制
  • 批准号:
    1852578
  • 财政年份:
    2019
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Electro-Braille: A New Tactile Sensory Substitution and Assistive Technology for the Blind and Visually Impaired
职业:自适应电子盲文:一种针对盲人和视障人士的新型触觉替代和辅助技术
  • 批准号:
    1352006
  • 财政年份:
    2014
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant

相似国自然基金

密排六方结构材料孪晶对(twin pairs)现象微观机理研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
密排六方结构材料孪晶对(twin pairs)现象机理研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Digital Twin的数控机床智能运行维护方法研究
  • 批准号:
    51875323
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
安氏II类1分类伴下颌后缩生长发育期患者Twin Block矫治后上气道反应的流体动力学仿真模拟
  • 批准号:
    81571010
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Twin支持向量机的拓广及其应用
  • 批准号:
    11161045
  • 批准年份:
    2011
  • 资助金额:
    45.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

IoDT2 - Internet of Digital Twin Things
IoDT2 - 数字孪生物联网
  • 批准号:
    10098627
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Collaborative R&D
BatCAT - Battery Cell Assembly Twin
BatCAT - 电池组装双胞胎
  • 批准号:
    10110057
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    EU-Funded
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant
The First Environmental Digital Twin Dedicated to Understanding Tropical Wetland Methane Emissions for Improved Predictions of Climate Change
第一个致力于了解热带湿地甲烷排放以改进气候变化预测的环境数字孪生
  • 批准号:
    MR/X033139/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Fellowship
A C. elegans whole-brain digital twin
线虫全脑数字双胞胎
  • 批准号:
    BB/Z514317/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Research Grant
TWINNING: Scalable technologies for creating virtual patient twin populations to accelerate in-silico enabled medical device innovation.
双胞胎:用于创建虚拟患者双胞胎群体的可扩展技术,以加速计算机模拟医疗设备创新。
  • 批准号:
    10103504
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Collaborative R&D
Spirit Use Case 2: Complex cavity ventilation/ compartment pressure relief digital twin
Spirit 用例 2:复杂腔体通风/隔间压力释放数字孪生
  • 批准号:
    10089679
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Collaborative R&D
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335570
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Standard Grant
TwinSSI: Digital Twin Modelling for Soil-Structure-Interaction based on CutFEM and BIM technologies
TwinSSI:基于 CutFEM 和 BIM 技术的土壤-结构相互作用数字孪生建模
  • 批准号:
    EP/Z001072/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.87万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了