Limits on graphene's charge carrier mobility and what we can do to overcome them --- interactions and disorder in epitaxial graphene on silicon carbide

石墨烯载流子迁移率的限制以及我们可以采取哪些措施来克服它们——碳化硅上外延石墨烯的相互作用和无序

基本信息

项目摘要

Epitaxial graphene on SiC(0001) is the favorite realization of graphene for wafer-sized growth with precise thickness control. Due to the small interaction with the substrate, the conical band structure is well-preserved. While the material system is in principle suitable for the application in electronic devices --- back gating and doping have been successfully implemented --- the reduced carrier mobility with respect to suspended graphene sheets seems to be an insuperable obstacle. Transport in high-speed electronic graphene devices is intrinsically limited by the scattering of the charge carriers from hot optical phonons. In addition, the charge carrier mobility is impaired by extrinsic effects, such as the presence of a substrate, defects or impurities. Despite previous efforts, a better understanding of both intrinsic and extrinsic effects is highly desirable. We will use time- and angle- resolved photoemission spectroscopy (ARPES) to access the decay channels of hot carriers in graphene and combine it with high-resolution static ARPES as well as simple model calculations to investigate the effects of different substrates, defects and impurities on the electronic structure of graphene. The graphene/SiC(0001) system offers an ideal playground for such investigations as it allows for the intercalation of various atoms (e.g. Au, Ge and H) in between the graphene-SiC interface as well as chemical doping by atom or molecule adsorption. Furthermore, controlled defect densities can be obtained by deliberately destroying the graphene lattice with Argon ion bombardment. In a second step, we will build on the knowledge gained through these studies to engineer a graphene/SiC(0001) system with an optimized graphene-SiC interface and doping level. For this purpose, we will exploit the interplay of different quasiparticle interactions with substrate screening, chemical doping, as well as deliberately created defect concentrations, and find a combination that results in the best possible conditions for graphene's charge carriers. Finally, using selective coherent phonon excitation with femtosecond optical pulses at mid-infrared wavelengths, we will attempt to tip the equilibrium balance between different quasiparticle interactions in graphene and induce novel electronic properties absent in equilibrium. Resonant excitation of the IR-active A_2u out-of-plane phonon will result in an average non-zero coupling between the otherwise uncoupled pi- and sigma-bands. This coupling might trigger phase transitions into the predicted quantum spin Hall phase or even into a transient superconducting phase. The combination of static and time-resolved ARPES is essential for a more complete understanding of interactions and disorder as only both a good time and energy resolution will ultimately reveal the intricacies of the peculiar electronic structure in graphene.
在碳化硅(0001)上外延石墨烯是最受欢迎的实现石墨烯的晶片尺寸生长和精确厚度控制的方法。由于与衬底的相互作用很小,锥形能带结构被很好地保存下来。虽然该材料系统原则上适合应用于电子器件-背门和掺杂已经成功实施-相对于悬浮的石墨烯薄膜,载流子迁移率的降低似乎是一个不可逾越的障碍。高速电子石墨烯器件的输运本质上受到热光学声子载流子散射的限制。此外,载流子迁移率受到外在效应的影响,例如衬底、缺陷或杂质的存在。尽管之前做出了努力,但更好地理解内在和外在影响是非常可取的。我们将使用时间和角度分辨光电子能谱(ARPES)来获取石墨烯中热载流子的衰变通道,并将其与高分辨率静态光电子能谱以及简单的模型计算相结合,研究不同衬底、缺陷和杂质对石墨烯电子结构的影响。石墨烯/碳化硅(0001)体系为此类研究提供了一个理想的平台,因为它允许各种原子(如Au、Ge和H)插入石墨烯-碳化硅界面之间,以及通过原子或分子吸附进行化学掺杂。此外,可以通过用Ar离子轰击故意破坏石墨烯晶格来控制缺陷密度。在第二步中,我们将在这些研究中获得的知识的基础上,设计出具有优化的石墨烯-碳化硅界面和掺杂水平的石墨烯/碳化硅(0001)系统。为此,我们将利用不同准粒子相互作用与衬底筛选、化学掺杂以及故意创造缺陷浓度的相互作用,并找到一种组合,为石墨烯的电荷载流子带来可能的最佳条件。最后,利用中红外波段飞秒光脉冲的选择性相干声子激发,我们将尝试倾斜石墨烯中不同准粒子相互作用之间的平衡,并诱导出平衡中不存在的新的电子性质。红外活性的A_2U离面声子的共振激发将导致未耦合的pi带和sigma带之间的平均非零耦合。这种耦合可能会触发相变到预测的量子自旋霍尔相,甚至触发到瞬时超导相。静态和时间分辨ARPES的结合对于更完整地理解相互作用和无序是必不可少的,因为只有同时具有良好的时间和能量分辨率才能最终揭示石墨烯中特殊电子结构的复杂性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Christian Reinhard Ast其他文献

Dr. Christian Reinhard Ast的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Christian Reinhard Ast', 18)}}的其他基金

Tailoring the spin-orbit interaction at surfaces and interfaces
定制表面和界面处的自旋轨道相互作用
  • 批准号:
    43127736
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
The electronic structure of correlated electron systems - Interactions and structural order in low dimensions
相关电子系统的电子结构 - 低维相互作用和结构顺序
  • 批准号:
    5438624
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Emmy Noether International Fellowships
Interacting Few Level Systems at the Atomic Scale
在原子尺度上交互少数能级系统
  • 批准号:
    527245016
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
MoS2-graphene二维亚纳米通道膜构筑及溶剂传质与筛分机制研究
  • 批准号:
    22378132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
LIPUS响应的弹性石墨烯多孔导管促进神经再生及其机制研究
  • 批准号:
    82370933
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于MXene-Graphene异构界面相互作用的太赫兹超宽带调制机理研究
  • 批准号:
    62375044
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
转角In2Se3/Graphene异质结的界面调控及电子性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
g-C3N4/Graphene二维异质结光电阴极保护材料的构筑及应变调控光电效率研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
ZnO/Graphene复合量子点的表面特性调控、吸附作用及抗菌性能增强机制
  • 批准号:
    51802185
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
三维多孔KCu7S4@C/graphene复合材料的可控制备及其储能性质的研究
  • 批准号:
    21805247
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
超细晶graphene/Cu材料累积叠轧过程中组织演变机制和强化机制
  • 批准号:
    51701174
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Graphene-induced charge separation for enhancing intimately coupled photocatalytic biodegradation
石墨烯诱导的电荷分离增强紧密耦合光催化生物降解
  • 批准号:
    23KF0111
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reducing the Risk and Economic burden of Recurrent stroke by improving medication adherence using a Novel SMART Pill CONTAINER, Cap, and Health Literacy Technologies
使用新型智能药丸容器、瓶盖和健康素养技术提高用药依从性,降低复发性中风的风险和经济负担
  • 批准号:
    10601743
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
High performance wearable body odor sensor arrays for disease detection and monitoring
用于疾病检测和监测的高性能可穿戴体味传感器阵列
  • 批准号:
    10674716
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Machine learning approaches for multi-organ neuronal network mapping and modulation
用于多器官神经元网络映射和调制的机器学习方法
  • 批准号:
    10746766
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Machine learning approaches for multi-organ neuronal network mapping and modulation
用于多器官神经元网络映射和调制的机器学习方法
  • 批准号:
    10538279
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Fabrication of and charge transport in twisted bilayer graphene transistors
扭曲双层石墨烯晶体管的制造和电荷传输
  • 批准号:
    575055-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Exploring the impact of confinement and defects on surface charge of 2D materials with controlled van der Waals nanochannels fabrication.
通过受控范德华纳米通道制造探索限制和缺陷对二维材料表面电荷的影响。
  • 批准号:
    21K20499
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Perovskite-Graphene Energy Integrating Detector for X-Ray Imaging
用于 X 射线成像的钙钛矿-石墨烯能量积分探测器
  • 批准号:
    10384524
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
CAREER: Multispectral broadband photodetectors based on multi-material films with intercalated graphene monolayers as charge collectors
职业:基于多材料薄膜的多光谱宽带光电探测器,以插层石墨烯单层作为电荷收集器
  • 批准号:
    2046176
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
COVID-19 Supplemental Request
COVID-19 补充请求
  • 批准号:
    10209829
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了