Elucidating how microtubule-microtubule interactions drive the dynamic reorganization of the microtubule cytoskeleton

阐明微管-微管相互作用如何驱动微管细胞骨架的动态重组

基本信息

  • 批准号:
    2018661
  • 负责人:
  • 金额:
    $ 105.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Microtubules are cellular polymers that build a variety of essential structures inside of cells where they provide a major component of a cell’s cytoskeletal network. Dynamic microtubule arrangements and rearrangements define cell shape, provide tracks for intracellular transport, and drive cell division and motility. Thus, active remodeling of the microtubule cytoskeleton is vital for cellular function. In recent years, biochemical studies of microtubules and their associated proteins have provided important insight into the molecular mechanisms underlying the dynamics of individual microtubule polymers. However, the rules governing how individual microtubules interact to give rise to dynamically-evolving cytoskeletal network architectures are still largely unknown. This project will employ a multidisciplinary approach to elucidate how microtubule-microtubule interactions encode the remodeling of the microtubule network, specifically focusing on migrating cells. The ability to reconstitute and manipulate the dynamic architecture of cytoskeletal ensembles will ultimately allow the control of cellular behavior, as well as the future development of biologically-inspired active materials. The project will provide for a diverse interdisciplinary training of undergraduate and graduate students and additional outreach efforts will be carried out in local schools and a science museum.The goal of this research is to elucidate the role of microtubule-microtubule interactions in the dynamic remodeling of the microtubule cytoskeleton, with a particular focus on microtubule network organization in the context of cell migration. The hypothesis is that nodes of microtubule-microtubule interactions serve as focal points for network remodeling, providing encoded microdomains for localized protein activity, and endowing the network with enhanced resistance to a variety of perturbations. To test this hypothesis, this project will combine cellular studies with in vitro reconstitution approaches and computational modeling. State-of-the-art imaging will be used to determine the properties of microtubule interaction nodes, as a function of angle, protein localization and microtubule dynamics parameters in the lamella of epithelial (LLC-PK1) and migrating (B16 melanoma) cells. In vitro, microtubule interactions will be reconstituted in the presence of distinct classes of microtubule-associated-proteins (MAPs) that target and regulate microtubule end dynamics, stabilize the microtubule polymer lattice, and induce polymer damage and severing. The network topology will be controlled using micropatterning techniques; biochemical and mechanical perturbations will be exerted using microfluidics and laser severing; and ensemble behavior will be modeled using computational simulations. Predictions obtained using in silico and in vitro approaches will be directly tested by observations of microtubule interactions in cells. Together, these approaches will uncover the interplay of biochemistry, mechanics and dynamics in a physiologically-relevant context. In addition to the immediate relevance for understanding cellular processes such as cell motility and neuronal growth cone guidance, the mechanisms identified here will be broadly important in the developmental context, where cytoskeleton-driven morphological changes define multicellular tissue and organ structures through the process of differentiation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微管是细胞聚合物,在细胞内构建各种基本结构,在那里它们提供细胞骨架网络的主要组成部分。动态微管排列和重排定义细胞形状,为细胞内运输提供轨道,并驱动细胞分裂和运动。因此,微管细胞骨架的主动重塑对细胞功能至关重要。近年来,微管及其相关蛋白的生物化学研究提供了重要的洞察到的分子机制的动态个别微管聚合物。然而,管理个体微管如何相互作用以产生动态进化的细胞骨架网络架构的规则在很大程度上仍然未知。该项目将采用多学科的方法来阐明微管-微管相互作用如何编码微管网络的重塑,特别关注迁移细胞。 重建和操纵细胞骨架集合的动态结构的能力将最终允许控制细胞行为,以及未来生物启发的活性材料的发展。该项目将为本科生和研究生提供多样化的跨学科培训,并将在当地学校和科学博物馆开展额外的外联工作。本研究的目标是阐明微管-微管相互作用在微管细胞骨架动态重塑中的作用,特别关注细胞迁移背景下的微管网络组织。该假说认为微管-微管相互作用的节点是网络重塑的焦点,为局部蛋白质活性提供编码的微结构域,并赋予网络对各种扰动的抵抗力。为了验证这一假设,本项目将联合收割机细胞研究与体外重建方法和计算建模相结合。最先进的成像技术将用于确定微管相互作用节点的特性,作为上皮细胞(LLC-PK 1)和迁移细胞(B16黑色素瘤)板层中角度、蛋白质定位和微管动力学参数的函数。在体外,微管相互作用将在不同类别的微管相关蛋白(MAP)的存在下重建,这些微管相关蛋白靶向并调节微管末端动力学,稳定微管聚合物晶格,并诱导聚合物损伤和切断。网络拓扑结构将使用微图案化技术进行控制;生物化学和机械扰动将使用微流体和激光切割进行施加;并且集合行为将使用计算模拟进行建模。使用计算机模拟和体外方法获得的预测将通过观察细胞中的微管相互作用直接进行测试。总之,这些方法将揭示生物化学,力学和动力学在生理相关背景下的相互作用。除了与理解细胞运动和神经生长锥引导等细胞过程直接相关外,这里确定的机制在发育背景下将具有广泛的重要性,其中细胞骨架-驱动的形态变化通过分化过程定义多细胞组织和器官结构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marija Zanic其他文献

XMAP215 and EB1 act in Synergy to Promote Microtubule Growth
  • DOI:
    10.1016/j.bpj.2012.11.3051
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Marija Zanic;Per Widlund;Anthony Hyman;Jonathon Howard
  • 通讯作者:
    Jonathon Howard
Dynamic Instability and Treadmilling Coexist for In Vitro Microtubules
  • DOI:
    10.1016/j.bpj.2018.11.869
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Goker Arpag;Marija Zanic
  • 通讯作者:
    Marija Zanic
Simultaneous tracking of multiple dynamic microtubule tips in time-lapse microscopy images
  • DOI:
    10.1016/j.bpj.2023.11.358
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Wonmuk Hwang;Goker Arpag;Veronica J. Farmer;Elizabeth Lawrence;Marija Zanic
  • 通讯作者:
    Marija Zanic
Microtubule Treadmilling Reconstituted with a Minimal-component <em>in vitro</em> System
  • DOI:
    10.1016/j.bpj.2019.11.353
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Goker Arpag;Elizabeth Lawrence;Marija Zanic
  • 通讯作者:
    Marija Zanic
Clasps Depolymerize Microtubules in a Nucleotide-Dependent Manner
  • DOI:
    10.1016/j.bpj.2020.11.338
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Elizabeth J. Lawrence;Marija Zanic
  • 通讯作者:
    Marija Zanic

Marija Zanic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Understanding how motors drive the pathogenesis in host cells infected with Chlamydia trachomatis.
了解马达如何驱动感染沙眼衣原体的宿主细胞的发病机制。
  • 批准号:
    491115
  • 财政年份:
    2023
  • 资助金额:
    $ 105.77万
  • 项目类别:
    Fellowship Programs
How are mono-oriented chromosome-microtubule attachments protected to prevent errors in mitosis and associated cellular ageing?
如何保护单向染色体微管附着以防止有丝分裂和相关细胞衰老的错误?
  • 批准号:
    BB/W002698/1
  • 财政年份:
    2022
  • 资助金额:
    $ 105.77万
  • 项目类别:
    Research Grant
Revealing how the mitotic spindle controls asymmetric cell division in vivo
揭示有丝分裂纺锤体如何控制体内不对称细胞分裂
  • 批准号:
    10470177
  • 财政年份:
    2020
  • 资助金额:
    $ 105.77万
  • 项目类别:
Microtubule bundles in the mitotic spindle: probing how mechanical and functional robustness emerge from molecular architecture
有丝分裂纺锤体中的微管束:探讨分子结构如何产生机械和功能稳健性
  • 批准号:
    10226166
  • 财政年份:
    2020
  • 资助金额:
    $ 105.77万
  • 项目类别:
Microtubule bundles in the mitotic spindle: probing how mechanical and functional robustness emerge from molecular architecture
有丝分裂纺锤体中的微管束:探讨分子结构如何产生机械和功能稳健性
  • 批准号:
    10028927
  • 财政年份:
    2020
  • 资助金额:
    $ 105.77万
  • 项目类别:
Revealing how the mitotic spindle controls asymmetric cell division in vivo
揭示有丝分裂纺锤体如何控制体内不对称细胞分裂
  • 批准号:
    10100123
  • 财政年份:
    2020
  • 资助金额:
    $ 105.77万
  • 项目类别:
Revealing how the mitotic spindle controls asymmetric cell division in vivo
揭示有丝分裂纺锤体如何控制体内不对称细胞分裂
  • 批准号:
    10266102
  • 财政年份:
    2020
  • 资助金额:
    $ 105.77万
  • 项目类别:
How Molecular Motors Work Together to Move Cargo: Nanometer Distances and Piconewton Forces
分子马达如何协同工作来移动货物:纳米距离和皮牛顿力
  • 批准号:
    10377346
  • 财政年份:
    2019
  • 资助金额:
    $ 105.77万
  • 项目类别:
How chlamydia generates cytoskeletal scaffolds and their role during infection
衣原体如何产生细胞骨架支架及其在感染过程中的作用
  • 批准号:
    10318117
  • 财政年份:
    2019
  • 资助金额:
    $ 105.77万
  • 项目类别:
How defects in centrosome to microtubule attachment cause microcephaly.
中心体与微管附着的缺陷如何导致小头畸形。
  • 批准号:
    nhmrc : GNT1162652
  • 财政年份:
    2019
  • 资助金额:
    $ 105.77万
  • 项目类别:
    Project Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了