Develop innovative stable RNA-based anti-fungal reagents to control plant fungal diseases

开发创新的稳定 RNA 抗真菌试剂来控制植物真菌病害

基本信息

  • 批准号:
    2020731
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Fungi can cause devastating diseases in plants and animals, posing an enormous threat to global food security and human health. In humans, fungal diseases are estimated to kill 1.5 million people every year. In plants, fungal pathogens cause serious diseases on most pre- and post-harvesting crops and causes billions of dollars loss worldwide every year. Despite these threats, current strategies for fighting fungal disease are limited to chemical control. In agriculture, fungicides can leave harmful residues in the environment. Further, fungi have developed resistant strains that can survive nearly all major classes of antifungal drugs and fungicides. In order to protect global food security, human health, and the environment it is critical to develop new technologies for combating fungal disease. Small RNAs are short regulatory molecules that can inhibit the expression of their target genes. This is called RNA interference. Recently, the research team discovered that multiple fungal pathogens can efficiently take up RNAs as a nutrient source from the environment. When fungi absorb RNAs that interfere with the expression of critical fungal proteins, their growth and virulence is severely inhibited. This finding allows them to design specific RNA molecules that can target fungal virulence-related genes to protect crops from fungal infection. These RNA-based antifungals can be sprayed onto plant material where they confer fungal disease protection to the plant, through a process called Spray-Induced Gene Silencing (SIGS). Unlike traditional fungicides, these RNA-based antifungals are safe to ingest and do not leave toxic residues in the soil. This project aims to establish and depoly RNA-based strategies for plant-pathogen immunity. To do this, the project will first address a significant hurdle limiting robust function: RNA rapidly degrades in the environment, especially in the soil, where many plant fungal pathogens originate. The current project aims to tackle this problem, and to further develop RNA-based antifungal strategies. One goal is to design SIGS RNAs capable of protecting plants from four aggressive pathogens. Concurrently, in order to enhance the stability of SIGS RNAs, the PI will develop several classes of RNA delivery vehicles, made of both organic and inorganic materials. While preliminary data shows that these RNA delivery vehicles can enhance the stability of RNAs on plant material, they are not sufficient in protecting RNA in the soil. In order to develop effective RNA-based antifungals to control soil-borne fungal pathogens, the PI will engineer beneficial soil microbes, specifically one bacterium and one fungus, to continuously produce and secrete antifungal RNAs into the soil. Overall, this project will develop the next generation of RNA-based antifungals to combat plant fungal pathogens, which will directly contribute to securing global food security. Further, once developed in plants, these RNA-based antifungal strategies can be translated into human and animal systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
真菌可在动植物中引起毁灭性疾病,对全球粮食安全和人类健康构成巨大威胁。在人类中,真菌疾病估计每年造成150万人死亡。在植物中,真菌病原体在大多数收获前和收获后的作物上引起严重的疾病,每年在全世界造成数十亿美元的损失。尽管存在这些威胁,但目前对抗真菌病的策略仅限于化学防治。在农业中,杀真菌剂会在环境中留下有害残留物。此外,真菌已经发展出几乎可以在所有主要类别的抗真菌药物和杀真菌剂中存活的抗性菌株。为了保护全球粮食安全、人类健康和环境,开发防治真菌病的新技术至关重要。小RNA是一种短的调控分子,可以抑制其靶基因的表达。这被称为RNA干扰。最近,研究小组发现,多种真菌病原体可以有效地从环境中吸收RNA作为营养来源。当真菌吸收干扰关键真菌蛋白质表达的RNA时,它们的生长和毒力受到严重抑制。这一发现使他们能够设计特异性RNA分子,可以靶向真菌毒力相关基因,以保护作物免受真菌感染。这些基于RNA的抗真菌剂可以喷洒到植物材料上,通过一种称为喷雾诱导基因沉默(SIGS)的过程,它们为植物提供真菌疾病保护。与传统的杀真菌剂不同,这些基于RNA的抗真菌剂可以安全摄入,不会在土壤中留下有毒残留物。本项目旨在建立和解聚基于RNA的植物病原体免疫策略。为此,该项目将首先解决限制强大功能的一个重大障碍:RNA在环境中迅速降解,特别是在许多植物真菌病原体起源的土壤中。当前项目旨在解决这一问题,并进一步开发基于RNA的抗真菌策略。一个目标是设计能够保护植物免受四种侵略性病原体侵害的SIGSRNA。同时,为了提高SIGS RNA的稳定性,PI将开发几类由有机和无机材料制成的RNA递送载体。虽然初步数据显示,这些RNA递送载体可以增强RNA在植物材料上的稳定性,但它们不足以保护土壤中的RNA。为了开发有效的基于RNA的抗真菌剂来控制土传真菌病原体,PI将设计有益的土壤微生物,特别是一种细菌和一种真菌,以持续产生并分泌抗真菌RNA到土壤中。总的来说,该项目将开发下一代基于RNA的抗真菌剂,以对抗植物真菌病原体,这将直接有助于确保全球粮食安全。此外,一旦在植物中开发,这些基于RNA的抗真菌策略可以转化为人类和动物系统。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs.
  • DOI:
    10.1016/j.chom.2021.01.005
  • 发表时间:
    2021-03-10
  • 期刊:
  • 影响因子:
    30.3
  • 作者:
    Huang CY;Rangel DS;Qin X;Bui C;Li R;Jia Z;Cui X;Jin H
  • 通讯作者:
    Jin H
Message in a Bubble: Shuttling Small RNAs and Proteins Between Cells and Interacting Organisms Using Extracellular Vesicles.
气泡中的消息:使用细胞外囊泡在细胞和相互作用的生物之间穿梭小RNA和蛋白质。
  • DOI:
    10.1146/annurev-arplant-081720-010616
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    23.9
  • 作者:
    Cai Q;He B;Wang S;Fletcher S;Niu D;Mitter N;Birch PRJ;Jin H
  • 通讯作者:
    Jin H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hailing Jin其他文献

Plant biotic Interactions.
RNA Abundance Analysis
RNA丰度分析
Host Small RNAs and Plant Innate Immunity
宿主小 RNA 和植物先天免疫
  • DOI:
    10.1007/978-3-642-19454-2_2
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Shang Gao;Hailing Jin
  • 通讯作者:
    Hailing Jin
BioClayTM prolongs RNA interference-mediated crop protection against Botrytis cinerea.
BioClayTM 可延长 RNA 干扰介导的作物保护免受灰葡萄孢的影响。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    J. Niño;P. Sambasivam;A. Sawyer;R. Hamby;Angel Y. S. Chen;E. Czislowski;Peng Li;Narelle Manzie;D. Gardiner;R. Ford;Z. Xu;N. Mitter;Hailing Jin
  • 通讯作者:
    Hailing Jin
Oryza sativa from natural antisense transcripts in Genome-wide identification and analysis of small RNAs originated Material Supplemental
来自天然反义转录物的水稻在全基因组鉴定和分析源自小RNA的材料补充中
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuefeng Zhou;R. Sunkar;Hailing Jin;Jian‐Kang Zhu;Weixiong Zhang
  • 通讯作者:
    Weixiong Zhang

Hailing Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hailing Jin', 18)}}的其他基金

Small RNA Trafficking in Cross-kingdom RNAi between Fungal Pathogen Botrytis cinerea and its Plant Hosts
真菌病原体灰葡萄孢及其植物宿主之间跨界 RNAi 中的小 RNA 贩运
  • 批准号:
    1557812
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Investigate the role of small RNAs of a necrotrophic fungal pathogen B. cinerea in suppressing host Immunity
研究坏死营养型真菌病原体 B. cinerea 的小 RNA 在抑制宿主免疫中的作用
  • 批准号:
    1257576
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER:Genome-wide Analysis of Pathogen-induced Endogenous siRNAs in Plant Defense Responses in Arabidopsis
职业生涯:拟南芥植物防御反应中病原体诱导的内源 siRNA 的全基因组分析
  • 批准号:
    0642843
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

Innovative Stable Free Radical-Substituted Conjugated Electronic Polymers
创新的稳定自由基取代共轭电子聚合物
  • 批准号:
    DP230101666
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Projects
Ultra-stable, phase sensitive, snapshot OCT system enabled by 2-Photon additive manufacturing
通过 2 光子增材制造实现超稳定、相敏、快照 OCT 系统
  • 批准号:
    10607853
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Engineering of Stretchable Neural Interfaces Using Liquid Metals for Stable Electrical Communication and Adaptive Stiffness Transformation
使用液态金属实现稳定电通信和自适应刚度变换的可拉伸神经接口工程
  • 批准号:
    10666925
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
  • 批准号:
    10707887
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
  • 批准号:
    10797600
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Developing a stable cell line expressing recombinant sclerostin
开发表达重组硬化素的稳定细胞系
  • 批准号:
    10385037
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
  • 批准号:
    10797697
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
  • 批准号:
    10354268
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Development of Phototherapeutic Drugs and Elucidation of Single Molecule Dynamics Using Highly Bright Stable Quantum Dots and Innovative 3D cell system
使用高亮稳定量子点和创新的 3D 细胞系统开发光治疗药物并阐明单分子动力学
  • 批准号:
    21H01753
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrating Coronary Atherosclerosis with Physiologic Features for Optimized Risk Stratification
将冠状动脉粥样硬化与生理特征相结合以优化风险分层
  • 批准号:
    10590718
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了