NRI: FND: A Formal Methods Approach to Safe, Composable, and Distributed Reinforcement Learning for co-Robots

NRI:FND:协作机器人安全、可组合和分布式强化学习的形式化方法

基本信息

  • 批准号:
    2024606
  • 负责人:
  • 金额:
    $ 54.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Many applications require heterogeneous teams of robots to collaborate with each other and with humans to accomplish complex tasks. Consider, for example, a futuristic robotic restaurant, in which the goal is to make hotdogs and serve them together with drinks to incoming customers. A couple of robotic manipulators have sensors and actuators allowing them to manipulate and grill the hotdogs, put them in buns, and add spices. Another robot has a gripper that allows it to handle glasses and pour drinks. Mobile wheeled robots can move around the restaurant, greet the customers, and then serve them hotdogs and drinks. A human supervisor gives the robotic team high level task specifications, together with some useful facts, and then watches the team working. If something goes wrong, or the robots do not manage to coordinate efficiently, the supervisor can intervene and give more instructions. Many other application areas share similar scenarios, including agriculture, military surveillance, search and rescue. This project proposes an approach to solve such problems that exploits the robots’ manipulation and cooperation capabilities, allows for rich task specifications and interactions with humans, while at the same time ensuring the safety of the overall operation. The research plan is integrated with an education and outreach plan that includes a rich spectrum of robotic-related activities for undergraduate and high-school students.The proposed technical approach brings together tools from machine (reinforcement) learning, formal methods, and optimal control. A rich, easy-to-understand, temporal logic specification language will be developed to formalize requirements such as the ones from the example above, and to specify prior knowledge. Central to the computational framework is a metric that measures the satisfaction of the specifications, which will be used to guide the learning process. This metric will be combined with control barrier functions to ensure safety. The proposed approach is compositional - policies for new tasks will be constructed from a library of learned policies with little to no additional exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多应用程序需要不同类型的机器人团队相互协作,并与人类协作来完成复杂的任务。例如,考虑一个未来的机器人餐厅,其目标是制作热狗,并将它们与饮料一起提供给即将到来的顾客。几个机器人操纵者有传感器和执行器,允许他们操纵和烤热狗,把它们放在面包里,并添加香料。另一个机器人有一个抓手,可以拿杯子和倒饮料。移动轮式机器人可以在餐厅周围移动,向顾客打招呼,然后为他们提供热狗和饮料。一名人类主管向机器人团队提供高级任务规范,以及一些有用的事实,然后观察团队的工作。如果出现问题,或者机器人无法有效协调,主管可以进行干预并给出更多指示。许多其他应用领域都有类似的场景,包括农业、军事监视、搜索和救援。本项目提出了一种解决此类问题的方法,该方法利用机器人的操纵和合作能力,允许丰富的任务规范和与人类的交互,同时确保整体操作的安全性。该研究计划与教育和推广计划相结合,该计划包括为本科生和高中生提供丰富的机器人相关活动。提出的技术方法汇集了机器(强化)学习、形式化方法和最优控制的工具。将开发一种丰富的、易于理解的时态逻辑规范语言来形式化需求,例如上面的例子中的需求,并指定先验知识。计算框架的核心是一个度量规范满意度的度量,它将用于指导学习过程。这一指标将与控制屏障功能相结合,以确保安全。提出的方法是组合的——新任务的策略将从一个学习过的策略库中构建,几乎没有额外的探索。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Control Barrier Functions for Nonlinear Control Systems with Uncertainty: A Duality-based Approach
不确定性非线性控制系统的鲁棒控制势垒函数:基于对偶的方法
  • DOI:
    10.1109/cdc51059.2022.9992667
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cohen, Max H.;Belta, Calin;Tron, Roberto
  • 通讯作者:
    Tron, Roberto
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Calin Belta其他文献

B I O C O M P U T a T I O N
生物计算
  • DOI:
    10.1007/978-1-4613-0115-8_7
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rajeev Alur;Calin Belta;Vijay Kumar;Max Mintz;George J Pappas;Harvey Rubin;Jonathan Schug
  • 通讯作者:
    Jonathan Schug

Calin Belta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Calin Belta', 18)}}的其他基金

GCR: Collaborative Research: Micro-bio-genetics for Programmable Organoid Formation
GCR:合作研究:用于可编程类器官形成的微生物遗传学
  • 批准号:
    2219101
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Continuing Grant
GCR: Collaborative Research: Fine-grain generation of multiscale patterns in programmable organoids using microrobots
GCR:协作研究:使用微型机器人在可编程类器官中细粒度生成多尺度模式
  • 批准号:
    2020983
  • 财政年份:
    2020
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
S&AS: COLLAB: Organization of the 2018 Smart and Autonomous Systems (S&AS) PI Meeting
S
  • 批准号:
    1820857
  • 财政年份:
    2018
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
S&AS: INT: COLLAB: Autonomy as a Service
S
  • 批准号:
    1723995
  • 财政年份:
    2017
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Efficient Traffic Management: A Formal Methods Approach
CPS:协同:协作研究:高效交通管理:形式化方法
  • 批准号:
    1446151
  • 财政年份:
    2015
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
CPS: Frontier: Collaborative Research: BioCPS for Engineering Living Cells
CPS:前沿:合作研究:用于工程活细胞的 BioCPS
  • 批准号:
    1446607
  • 财政年份:
    2015
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Continuing Grant
Combining Optimality and Correctness in Control Systems
将控制系统的最优性和正确性相结合
  • 批准号:
    1400167
  • 财政年份:
    2014
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
NRI: Formal Methods for Motion Planning and Control with Human-in-the-Loop
NRI:人在环运动规划和控制的形式化方法
  • 批准号:
    1426907
  • 财政年份:
    2014
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
Collaborative Research: The Dynamics of the Innate Immune Systems: A Study of the Toll-like Receptors (TLR) Network
合作研究:先天免疫系统的动力学:Toll 样受体 (TLR) 网络的研究
  • 批准号:
    1137900
  • 财政年份:
    2011
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Efficient Control Synthesis and Learning in Distributed Cyber-Physical Systems
CPS:媒介:协作研究:分布式网络物理系统中的高效控制综合和学习
  • 批准号:
    1035588
  • 财政年份:
    2010
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024646
  • 财政年份:
    2021
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024792
  • 财政年份:
    2021
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
NRI: FND: Foundations for Physical Co-Manipulation with Mixed Teams of Humans and Soft Robots
NRI:FND:人类和软机器人混合团队物理协同操作的基础
  • 批准号:
    2024670
  • 财政年份:
    2021
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
NRI: FND: Natural Power Transmission through Unconstrained Fluids for Robotic Manipulation
NRI:FND:通过不受约束的流体进行自然动力传输,用于机器人操作
  • 批准号:
    2024409
  • 财政年份:
    2020
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
NRI: FND: Multi-Manipulator Extensible Robotic Platforms
NRI:FND:多机械手可扩展机器人平台
  • 批准号:
    2024435
  • 财政年份:
    2020
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
Collaborative Research: NRI: FND: Flying Swarm for Safe Human Interaction in Unstructured Environments
合作研究:NRI:FND:用于非结构化环境中安全人类互动的飞群
  • 批准号:
    2024615
  • 财政年份:
    2020
  • 资助金额:
    $ 54.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了