Combining Optimality and Correctness in Control Systems
将控制系统的最优性和正确性相结合
基本信息
- 批准号:1400167
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimal control is an area of engineering focused at maintaining systems close to desired behaviors, while at the same optimizing certain costs. Examples include driving a vehicle along a trajectory while minimizing fuel consumption, controlling a set of thermostats in a building to follow a desired temperature profile while maintaining electricity consumption to a minimum, etc. Formal verification is an area of computer science focused at proving the correctness of system designs. The systems are computer programs and digital circuits, while correctness specifications include safety (making sure nothing bad happens) and liveness (making sure something good eventually happens). With the increasing integration of physical and digital systems into safety critical cyber physical systems, there is a need for computational tools that combine optimal control and correctness requirements. This project establishes a connection between optimal control and formal verification and impacts a large number of areas where correctness and optimality are crucial, such as air traffic control (design safe minimum-energy paths for airplanes taking off and landing in a crowded airport), vehicle autonomy (e.g., persistent surveillance for disaster relief), medical robotics (optimality and safety are fundamental in the robotic needle steering problem), etc. The education and outreach plan includes related courses at the undergraduate and graduate level, the involvement of undergraduate and high school students in research, collaborations with elementary school robotics teams, and the involvement of the Principal Investigator in high school summer internship programs.The results of this project will include formulations and solutions to optimal control problems with correctness requirements expressed as temporal logic formulas for both finite and infinite systems, in both probabilistic and non-probabilistic setups. The systems under consideration are finite-state transition systems and Markov decisions processes, and infinite-state discrete-time (stochastic) linear systems and piecewise affine systems. Correctness is specified as formulas of Linear Temporal Logic. The optimization objectives include classical average costs per stage and quadratics over state and control variables, as well as some special costs induced by particular specifications. Central to the approach are receding-horizon implementations of the optimal control strategies. The main application area is autonomous vehicle control for search and rescue in disaster relief scenarios.
最优控制是一个工程领域,专注于保持系统接近期望的行为,同时优化某些成本。例子包括驾驶车辆沿着的轨迹,同时最大限度地减少燃料消耗,控制一组恒温器在建筑物中遵循所需的温度曲线,同时保持电力消耗最小等正式验证是计算机科学领域的重点是证明系统设计的正确性。系统是计算机程序和数字电路,而正确性规范包括安全性(确保没有坏的事情发生)和活性(确保最终发生好的事情)。随着物理和数字系统越来越多地集成到安全关键的网络物理系统中,需要将联合收割机最优控制和正确性要求相结合的计算工具。该项目建立了最优控制和形式验证之间的联系,并影响了大量正确性和最优性至关重要的领域,例如空中交通控制(为飞机在拥挤的机场起飞和降落设计安全的最小能量路径),车辆自主(例如,持续监测救灾),医疗机器人(最优性和安全性是机器人针转向问题的根本)等,教育和推广计划包括本科和研究生水平的相关课程,本科和高中学生参与研究,与小学机器人团队合作以及首席研究员参与高中暑期实习计划。该项目的结果将包括最优控制问题的公式和解决方案,这些问题的正确性要求表示为时间逻辑公式,有限和无限系统,在概率和非概率设置。所考虑的系统是有限状态转移系统和马尔可夫决策过程,以及无限状态离散时间(随机)线性系统和分段仿射系统。正确性被指定为线性时序逻辑的公式。优化目标包括经典的每级平均成本和状态和控制变量的二次型,以及由特定规格引起的一些特殊成本。该方法的核心是最优控制策略的滚动时域实现。主要应用领域是在救灾场景中进行搜索和救援的自主车辆控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Calin Belta其他文献
B I O C O M P U T a T I O N
生物计算
- DOI:
10.1007/978-1-4613-0115-8_7 - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rajeev Alur;Calin Belta;Vijay Kumar;Max Mintz;George J Pappas;Harvey Rubin;Jonathan Schug - 通讯作者:
Jonathan Schug
Calin Belta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Calin Belta', 18)}}的其他基金
GCR: Collaborative Research: Micro-bio-genetics for Programmable Organoid Formation
GCR:合作研究:用于可编程类器官形成的微生物遗传学
- 批准号:
2219101 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
NRI: FND: A Formal Methods Approach to Safe, Composable, and Distributed Reinforcement Learning for co-Robots
NRI:FND:协作机器人安全、可组合和分布式强化学习的形式化方法
- 批准号:
2024606 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
GCR: Collaborative Research: Fine-grain generation of multiscale patterns in programmable organoids using microrobots
GCR:协作研究:使用微型机器人在可编程类器官中细粒度生成多尺度模式
- 批准号:
2020983 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
S&AS: COLLAB: Organization of the 2018 Smart and Autonomous Systems (S&AS) PI Meeting
S
- 批准号:
1820857 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Efficient Traffic Management: A Formal Methods Approach
CPS:协同:协作研究:高效交通管理:形式化方法
- 批准号:
1446151 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Frontier: Collaborative Research: BioCPS for Engineering Living Cells
CPS:前沿:合作研究:用于工程活细胞的 BioCPS
- 批准号:
1446607 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
NRI: Formal Methods for Motion Planning and Control with Human-in-the-Loop
NRI:人在环运动规划和控制的形式化方法
- 批准号:
1426907 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: The Dynamics of the Innate Immune Systems: A Study of the Toll-like Receptors (TLR) Network
合作研究:先天免疫系统的动力学:Toll 样受体 (TLR) 网络的研究
- 批准号:
1137900 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Efficient Control Synthesis and Learning in Distributed Cyber-Physical Systems
CPS:媒介:协作研究:分布式网络物理系统中的高效控制综合和学习
- 批准号:
1035588 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似海外基金
Data-efficient Safe Control with Recovery-to-Optimality Guarantees
数据高效的安全控制,并保证恢复最佳性
- 批准号:
2227311 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Clarification of Minimax Optimality in Fair Regression under Demographic Parity
人口均等情况下公平回归中极小极大最优性的澄清
- 批准号:
23K13011 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robustness and Optimality of Estimation and Testing
估计和测试的稳健性和最优性
- 批准号:
2310769 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Investigating the role of the Ccr4-Not complex in regulating codon optimality-mediated mRNA decay
研究 Ccr4-Not 复合体在调节密码子最优性介导的 mRNA 衰减中的作用
- 批准号:
10749985 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
CAREER: Federated Learning: Statistical Optimality and Provable Security
职业:联邦学习:统计最优性和可证明的安全性
- 批准号:
2144593 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
- 批准号:
2218713 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
- 批准号:
10623162 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Understanding the relationship between codon optimality and mRNA stability
了解密码子最优性和 mRNA 稳定性之间的关系
- 批准号:
10330674 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Nonparametric Methodology for Learning from People: Inference, Algorithms, and Optimality
向人学习的非参数方法:推理、算法和最优性
- 批准号:
2210734 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Optimality in analysis and geometry of probability measures
概率测度分析和几何的最优性
- 批准号:
RGPIN-2019-03926 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




