Manufacturing of High Strength, High Ductility, Rare Earth-Free Magnesium Alloy Plate and Sheet Materials by Differential Speed Rolling

差速轧制高强高塑无稀土镁合金板片材制造

基本信息

项目摘要

This award supports US manufacturing needs, industries and future workforce. With its lightness, strength, castability and damping capacity, magnesium alloys offer significant opportunities for lightweight applications in transportation, armor, biomedical and others. The use of magnesium alloys as lightweight structural materials is one of the most effective ways to overcome the challenges in energy conservation. Sheet metal is one of the most used forms of metal alloys in many industries such as automobile, aerospace, and consumer goods. Sheet metals are typically manufactured with rolling technology. However, due to the crystal structure of magnesium, sheet metals made with conventional rolling are brittle and low in strength for warm-to-room temperature forming thereby limiting their use. To unleash the potential of magnesium alloys, there is a need to improve their formability. This project meets this need through integrated alloy design and processing with focus on differential speed rolling in which the two rolls of a rolling mill run at different, predetermined speeds. This approach demonstrates a capability to produce magnesium plate and sheet with high strength and high ductility, and good formability. The research involves several disciplines including materials engineering and processing, mechanics of materials and advanced manufacturing. This convergent approach helps promote diversity and culture of inclusion as well as facilitates workforce development in manufacturing.Differential speed rolling (DSR) in which two rolls of a rolling mill run at distinct speeds can produce Mg alloy plates and sheets with textures dominated by basal plane orientations tilted in the rolling direction. This texture change leads to strong activation of basal slip and thus to higher fracture strains. DSR advances conventional rolling by providing additional controllable shear stresses which enhance dynamic precipitation and grain refinement via dynamic recrystallization leading to higher strength and ductility of Mg alloys. Compared to other thermomechanical processing technologies based on severe shear deformation, such as, equal channel angular extrusion and high-pressure torsion, DSR is scalable due to its continuous nature. However, there is a lack of understanding of the relationships between alloy composition, initial microstructure, rolling parameters, final microstructure (grain refinement, precipitates, texture) and thermomechanical properties of the processed alloys, and the appropriate rolling strategy for their warm-to-room-temperature formability. The team plans to perform experimental investigations driven by finite element simulations (FE-DEFORM) of plastic deformation in the rolling process. This research is expected to define the role of dynamic recrystallization, dynamic precipitation, twinning, texture evolution and grain growth in processing-microstructure-property relationships that lead to discovery of new approaches to improve formability and increase strain-hardening of Mg alloys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持美国制造业的需求,行业和未来的劳动力。镁合金具有轻质、强度、可铸造性和阻尼能力,为运输、装甲、生物医学等领域的轻量化应用提供了重要机会。使用镁合金作为轻质结构材料是克服节能挑战的最有效途径之一。金属板是许多行业中最常用的金属合金形式之一,例如汽车,航空航天和消费品。金属板通常用轧制技术制造。然而,由于镁的晶体结构,用常规轧制制成的金属板对于温热至室温成形来说是脆性的并且强度低,从而限制了它们的使用。为了释放镁合金的潜力,需要改善其可成形性。该项目通过集成合金设计和加工满足了这一需求,重点是差速轧制,其中轧机的两个轧辊以不同的预定速度运行。这种方法证明了生产具有高强度和高延展性以及良好成形性的镁板和片材的能力。该研究涉及材料工程与加工、材料力学和先进制造等多个学科。差速轧制(DSR)是指轧机的两个轧辊以不同的速度运行,可以生产出基面取向与轧制方向倾斜的织构为主的镁合金板材。这种织构变化导致强烈的基滑活化,从而导致更高的断裂应变。DSR通过提供额外的可控剪切应力来促进常规轧制,所述剪切应力经由动态再结晶增强动态沉淀和晶粒细化,从而导致镁合金的更高强度和延展性。与其他基于严重剪切变形的热机械加工技术相比,例如,等通道角挤压和高压扭转,DSR由于其连续性而可扩展。 然而,缺乏对合金成分、初始微观结构、轧制参数、最终微观结构(晶粒细化、析出物、织构)和加工合金的热机械性能之间的关系的理解,以及用于其温热至室温成形性的适当轧制策略。该团队计划通过轧制过程中塑性变形的有限元模拟(FE-DEFORM)进行实验研究。本研究旨在明确动态再结晶、动态析出、孪晶、在加工-显微组织-性能关系中的织构演变和晶粒生长,导致发现改进成形性和增加应变的新方法,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparison of Single-Pass Differential Speed Rolling (DSR) and ConventionalRolling (CR) on the Microstructure and Mechanical Properties ofMg5Zn
单道次差速轧制(DSR)与常规轧制(CR)对Mg5Zn显微组织和力学性能的比较
  • DOI:
    10.2174/2666145416666221130161152
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hale, Christopher;Xu, Zhigang;Zhang, Honglin;Yarmolenko, Sergey;Sankar, Jagannathan
  • 通讯作者:
    Sankar, Jagannathan
The Effect of Extrusion Temperatures on Microstructure and Mechanical Properties of Mg-1.3Zn-0.5Ca (wt.%) Alloys
%20效果%20of%20挤压%20温度%20on%20显微组织%20和%20机械%20性能%20of%20Mg-1.3Zn-0.5Ca%20(wt.%)%20合金
  • DOI:
    10.3390/cryst11101228
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhang, Honglin;Xu, Zhigang;Kecskes, Laszlo J.;Yarmolenko, Sergey;Sankar, Jagannathan
  • 通讯作者:
    Sankar, Jagannathan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jagannathan Sankar其他文献

Jagannathan Sankar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jagannathan Sankar', 18)}}的其他基金

EAGER: Nanostructured porous and laminate coatings for biodegradable magnesium-based implants with tunable water permeability and improved mechanical properties
EAGER:用于可生物降解镁基植入物的纳米结构多孔和层压涂层,具有可调节的透水性和改进的机械性能
  • 批准号:
    1841463
  • 财政年份:
    2018
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Integrated Research Instrument for Large Animal Testing Investigation
MRI:采购用于大型动物测试研究的综合研究仪器
  • 批准号:
    1229392
  • 财政年份:
    2012
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Standard Grant
ERC - Small Business: Biological and Biomechanical Assessment of Magnesium as a Possible Bioresorbable Material for Intervertebral Spinal Fusion
ERC - 小型企业:镁作为椎间融合的生物可吸收材料的生物和生物力学评估
  • 批准号:
    1128608
  • 财政年份:
    2011
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of a Nanotom-Computed Tomography System for Revolutionizing Metallic Biomaterials Research, Education and Training
MRI-R2:购买纳米计算机断层扫描系统,彻底改变金属生物材料研究、教育和培训
  • 批准号:
    0959511
  • 财政年份:
    2010
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Standard Grant
NSF Engineering Research Center for Revolutionizing Metallic Biomaterials
NSF 金属生物材料革命工程研究中心
  • 批准号:
    0812348
  • 财政年份:
    2008
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Cooperative Agreement
MRI: Acquisition of Raman Micro-Spectroscopy System for Advanced Interdisciplinary Materials Research, Education and Training
MRI:采购拉曼显微光谱系统用于高级跨学科材料研究、教育和培训
  • 批准号:
    0619192
  • 财政年份:
    2006
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Standard Grant
NSF-Europe Materials Collaboration: Self-Organized Nanostructured Thin Films for Catalysis in Perovskite Related Membrane Reactors
NSF-欧洲材料合作:用于钙钛矿相关膜反应器催化的自组织纳米结构薄膜
  • 批准号:
    0502765
  • 财政年份:
    2005
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Continuing Grant
Center for Advanced Materials and Smart Structures
先进材料和智能结构中心
  • 批准号:
    0205803
  • 财政年份:
    2002
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Cooperative Agreement
CREST: Center for Advanced Materials and Smart Structures.
CREST:先进材料和智能结构中心。
  • 批准号:
    9706680
  • 财政年份:
    1997
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Cooperative Agreement

相似海外基金

Development of novel metastable beta titanium alloys with ultrahigh strength and large ductility
超高强度大塑性新型亚稳态β钛合金的研制
  • 批准号:
    24K08018
  • 财政年份:
    2024
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strain-Hardening Mechanisms in Ferrous Bulk Nanostructured Metals: Towards Managing Ultra-high Strength and Large Ductility
黑色金属块体纳米结构金属的应变硬化机制:实现超高强度和大延展性
  • 批准号:
    23H00234
  • 财政年份:
    2023
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Structural Metallic Materials Managing Ultra High Strength and Large Ductility by Hig h-Order Control of Deformation: Fostering Young Researchers with Dual-Sword Skills of Experiments and Computation
通过高阶变形控制实现超高强度和大延展性的结构金属材料:培养具有实验和计算双剑技能的年轻研究人员
  • 批准号:
    23K20037
  • 财政年份:
    2023
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Leading Research )
Enhancement of strength-ductility trade-off by microstructure control of C-doped FeNiCoCr HEA.
通过 C 掺杂 FeNiCoCr HEA 的微观结构控制增强强度-延展性权衡。
  • 批准号:
    22K20478
  • 财政年份:
    2022
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Optimizing the strength and ductility of materials through control of microstructure
通过控制微观结构优化材料的强度和延展性
  • 批准号:
    RGPIN-2019-05414
  • 财政年份:
    2022
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Discovery Grants Program - Individual
A novel method for overcoming the strength-ductility trade-off of titanium and titanium alloys by high-density pulsed electric current
一种通过高密度脉冲电流克服钛及钛合金强度-延展性权衡的新方法
  • 批准号:
    22K20408
  • 财政年份:
    2022
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Deformation Mechanisms of Gradient Steels with High Strength and Ductility
高强高塑梯度钢的变形机制
  • 批准号:
    2217727
  • 财政年份:
    2022
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Standard Grant
Ultrafine-grained Magnesium Alloys Manufactured by Multi-axial Forging: Elucidating Mechanisms of Achieving Both High Strength and High Ductility
多轴锻造制造超细晶镁合金:阐明实现高强度和高延展性的机制
  • 批准号:
    2130586
  • 财政年份:
    2022
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Standard Grant
Effect of surfaces, internal and external, on the strength and ductility of metals
内部和外部表面对金属强度和延展性的影响
  • 批准号:
    RGPIN-2017-05771
  • 财政年份:
    2021
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Discovery Grants Program - Individual
Optimizing the strength and ductility of materials through control of microstructure
通过控制微观结构优化材料的强度和延展性
  • 批准号:
    RGPIN-2019-05414
  • 财政年份:
    2021
  • 资助金额:
    $ 58.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了