Deformation Mechanisms of Gradient Steels with High Strength and Ductility

高强高塑梯度钢的变形机制

基本信息

  • 批准号:
    2217727
  • 负责人:
  • 金额:
    $ 58.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Gradient metals are designed such that the physical properties change steadily with position. This has many benefits but none more than the ability to achieve enhanced strength and ductility at the same time. There are competing views regarding the mechanisms responsible for this phenomenon, but many of these views have not been validated and reconciled. This award will use a combination of novel in situ mechanical testing and modeling at various length scales to distinguish the various deformation mechanisms in gradient steel microstructures. Structurally gradient steels with high strength and ductility have broad applications in nuclear, petrochemical and automobile industries. The fundamental knowledge derived from this study may be generally applicable for the design of other strong and ductile structural metallic materials. The award will also support an extensive education and outreach plan, including the opportunity for graduate students to work with collaborators at a national laboratory, recruitment of minority undergraduate students as interns, and mentoring of middle and high school students in science fairs.The objective of this grant is to investigate, at a fundamental level, the influence of microstructure gradient on mechanical behavior of steels by integrating severe plastic deformation, in situ micromechanical testing, and crystal plasticity simulations. The goal is to design heterogeneous materials with significantly improved mechanical strength and ductility. The hypothesis is that significant grain coarsening of the elongated grain morphology arises from dynamic recrystallization and/or stress-driven grain boundary migration, and the switching between the two mechanisms should be temperature dependent. A further hypothesis is that the suppression of localized shear softening under the combined influence of deformation mechanisms and gradient microstructure evolution leads to increased strength and ductility. To test these hypotheses, a dislocation plasticity based theoretical framework combining plastic deformation, dynamic recrystallization, and stress-driven grain boundary migration will be developed to study gradient microstructures. The modeling will complement the investigation of the fundamental deformation mechanisms by in situ tension microscopy studies at various temperatures and length scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
梯度金属被设计成使得物理性质随着位置而稳定地变化。这有许多好处,但没有比同时实现增强的强度和延展性的能力更多。关于造成这一现象的机制,存在着不同的观点,但其中许多观点尚未得到证实和调和。该奖项将使用各种长度尺度的新型原位力学测试和建模相结合,以区分梯度钢微观结构中的各种变形机制。高强度高韧性梯度结构钢在核工业、石油化工和汽车工业中有着广泛的应用。本研究所获得的基本知识可普遍应用于其他强韧性结构金属材料的设计。该奖项还将支持一项广泛的教育和推广计划,包括研究生有机会在国家实验室与合作者合作,招募少数民族本科生作为实习生,并在科学博览会上指导初中和高中学生。结合剧烈塑性变形、原位微观力学测试和晶体塑性模拟,研究了显微组织梯度对钢力学行为的影响。目标是设计具有显著改善的机械强度和延展性的异质材料。该假设是,显着的晶粒粗化的细长晶粒形态来自动态再结晶和/或应力驱动的晶界迁移,这两种机制之间的切换应该是温度依赖性的。进一步的假设是,在变形机制和梯度微观结构演变的综合影响下,局部剪切软化的抑制导致强度和延展性的增加。为了验证这些假设,位错塑性为基础的理论框架相结合的塑性变形,动态再结晶,和应力驱动的晶界迁移将被开发来研究梯度微观结构。该模型将补充调查的基本变形机制,在现场张力显微镜研究在不同的温度和长度scales.This奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinghang Zhang其他文献

Tribology of incoloy 800HT for nuclear reactors under helium environment at elevated temperatures
高温氦环境下核反应堆用 incoloy 800HT 的摩擦学
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Saifur Rahman;Jie Ding;A. Beheshti;Xinghang Zhang;A. Polycarpou
  • 通讯作者:
    A. Polycarpou
Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ consolidation of powders during mechanical attrition
机械研磨过程中粉末原位固结制备块状超细晶纳米结构 Zn、Al 及其合金
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinghang Zhang;Haiyan Wang;M. Kassem;J. Narayan;C. Koch
  • 通讯作者:
    C. Koch
Variation model of north-south plant species diversity in the Qinling-Daba Mountains in China
  • DOI:
    10.1016/j.gecco.2022.e02190
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Xinghang Zhang;Baiping Zhang;Yonghui Yao;Junjie Liu;Jing Wang;Fuqin Yu;Jiayu Li
  • 通讯作者:
    Jiayu Li
Enhancement of Radiation Tolerance by Interfaces in Nanostructured Metallic Materials
  • DOI:
    10.21236/ada596809
  • 发表时间:
    2013-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinghang Zhang
  • 通讯作者:
    Xinghang Zhang
Design of 3D Oxide–Metal Hybrid Metamaterial for Tailorable Light–Matter Interactions in Visible and Near‐Infrared Region
用于可见光和近红外区域可定制光-物质相互作用的 3D 氧化物-金属混合超材料设计
  • DOI:
    10.1002/adom.202001154
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Di Zhang;P. Lu;S. Misra;Ashley Wissel;Zihao He;Z. Qi;Xingyao Gao;Xing Sun;Juncheng Liu;Juanjuan Lu;Xinghang Zhang;Haiyan Wang
  • 通讯作者:
    Haiyan Wang

Xinghang Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinghang Zhang', 18)}}的其他基金

NSF-DFG: Hierarchical Design and Additive Manufacturing of Metallic Programmable Metamaterials
NSF-DFG:金属可编程超材料的分层设计和增材制造
  • 批准号:
    2228266
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Interface enabled plasticity in high-strength Co-based intermetallics
合作研究:高强度钴基金属间化合物的界面塑性
  • 批准号:
    2210152
  • 财政年份:
    2022
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Mechanics and Kinetics of Void Swelling in Irradiated Nanoporous Materials
辐照纳米多孔材料中空隙膨胀的力学和动力学
  • 批准号:
    1728419
  • 财政年份:
    2017
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
  • 批准号:
    1642759
  • 财政年份:
    2016
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
  • 批准号:
    1643915
  • 财政年份:
    2016
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: deformation mechanisms of fcc and hcp Cobalt with high-density stacking faults
合作研究:具有高密度堆垛层错的fcc和hcp钴的变形机制
  • 批准号:
    1508366
  • 财政年份:
    2015
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Fundamental mechanisms of removal of stacking fault tetrahedra by mobile low energy boundaries
移动低能边界去除堆垛层错四面体的基本机制
  • 批准号:
    1304101
  • 财政年份:
    2013
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Friction and plasticity of amorphous metal coatings
非晶金属涂层的摩擦和塑性
  • 批准号:
    1161978
  • 财政年份:
    2012
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Novel Magnetic Shape Memory Alloy Thin Films for Sensor and Actuator Applications
用于传感器和执行器应用的新型磁性形状记忆合金薄膜
  • 批准号:
    1129065
  • 财政年份:
    2011
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Materials World Network: Novel Interface and Strain Control in Epitaxial Nanocomposite Films
材料世界网络:外延纳米复合薄膜中的新型界面和应变控制
  • 批准号:
    1007969
  • 财政年份:
    2010
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
  • 批准号:
    2310100
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanisms driving positive and negative tree-fungal feedbacks across an abiotic-stress gradient
合作研究:在非生物胁迫梯度上驱动正负树真菌反馈的机制
  • 批准号:
    2310101
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
Molecular mechanisms that control column polarity in the brain by the gradient of Wnt l igands
通过 Wnt 配体梯度控制大脑柱极性的分子机制
  • 批准号:
    22KF0151
  • 财政年份:
    2023
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidating the mechanisms of gradient dependent and independent Wnt signaling in neuronal development
阐明神经元发育中梯度依赖和独立的 Wnt 信号传导机制
  • 批准号:
    RGPIN-2021-03154
  • 财政年份:
    2022
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Discovery Grants Program - Individual
RoL:Deciphering the robustness mechanisms of the stem promoting transcription factor gradient
RoL:破译茎促进转录因子梯度的鲁棒性机制
  • 批准号:
    2055690
  • 财政年份:
    2021
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Elucidating the mechanisms of gradient dependent and independent Wnt signaling in neuronal development
阐明神经元发育中梯度依赖和独立的 Wnt 信号传导机制
  • 批准号:
    RGPIN-2021-03154
  • 财政年份:
    2021
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Discovery Grants Program - Individual
Study of the mechanisms of slip transfer at grain boundaries in fcc bulk material by the combination of in situ atomic force microscopy and orientation gradient evaluation by HR-EBSD
结合原位原子力显微镜和 HR-EBSD 取向梯度评估研究面心立方块体材料晶界滑移传递机制
  • 批准号:
    411096820
  • 财政年份:
    2018
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Research Grants
Collaborative Research: Mechanisms of Gradient Sensing by 'Feel' in Cell Migration Directed by Extracellular Matrix
合作研究:细胞外基质引导的细胞迁移中“感觉”梯度感知的机制
  • 批准号:
    1706019
  • 财政年份:
    2017
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of Gradient Sensing by 'Feel' in Cell Migration Directed by Extracellular Matrix
合作研究:细胞外基质引导的细胞迁移中“感觉”梯度感知的机制
  • 批准号:
    1706087
  • 财政年份:
    2017
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Mechanisms of tree recruitment limitation across a savanna soil moisture availability gradient
合作研究:稀树草原土壤水分有效性梯度中树木补充限制的机制
  • 批准号:
    1145787
  • 财政年份:
    2012
  • 资助金额:
    $ 58.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了