Collaborative Research: Cellular Metamaterials that Localize Stress - Towards a Topological Protection against Fracture

合作研究:局部化应力的细胞超材料——实现拓扑防断裂

基本信息

项目摘要

One of the main challenges in designing engineering structures that can withstand severe loading conditions is the development of materials that can intelligently manage stresses to avoid or retard the onset and propagation of fracture. Most traditional approaches towards this goal involve improvements in the microstructural composition of the material to increase toughness. This award revisits fracture in the context of lattice materials featuring a cellular architecture, where protection can be sought not only by adjusting the material composition but also through changes in the morphology of the cellular structure. The focus will be on a special class of lattice materials in which it may be possible to concentrate the stresses due to external loading at known, desirable locations, providing the ability to prevent or delay the onset of damage processes. The knowledge gained from this research will contribute towards the longevity and reliability of structural systems across engineering applications, from infrastructural engineering to the aerospace industry. The project will also support design of innovative demonstration kits on stress analysis for undergraduate students and demonstrations of basic principles of structural analysis for high-school students and the public.The objective of this project is to investigate the potential of topology in cellular metamaterials in managing internal stresses and protecting against fracturing. The project is centered on Maxwell lattices that can contain topologically polarized states, including topologically protected states of self-stress along internal domain walls or interfaces. When these lattices are loaded and deformed, the stress tends to focus predominantly on these interfaces, even in the presence of cracks in the domain. As a result, the detrimental stress concentration and subsequent fracturing, which is typically observed at crack tips can be avoided or significantly retarded. The project will assess how this property, which depends on the bulk architecture of the lattice, is preserved in going from ideal lattices endowed with perfect hinges to realistic lattices featuring structural ligaments. This objective will be achieved through an experimental characterization based on digital image correlation accompanied by theoretical development that will extend the topological fracture protection to the continuum limit. Efforts will be also devoted to determining how deep into the topological protection the material itself is affected by failure, an assessment of which will be sought experimentally using acoustic emission monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计能够承受严重载荷条件的工程结构的主要挑战之一是开发能够智能管理应力以避免或延迟断裂的发生和传播的材料。实现这一目标的大多数传统方法涉及改善材料的微观结构组成以增加韧性。该奖项重新审视了具有蜂窝结构的晶格材料的断裂,不仅可以通过调整材料成分,还可以通过改变蜂窝结构的形态来寻求保护。重点将放在一类特殊的晶格材料上,在这种材料中,由于外部载荷,应力可能集中在已知的理想位置,从而能够防止或延迟损伤过程的发生。从这项研究中获得的知识将有助于提高从基础设施工程到航空航天工业的工程应用中结构系统的寿命和可靠性。该项目还将支持为大学生设计应力分析的创新演示工具包,并为高中生和公众演示结构分析的基本原理。该项目的目的是研究细胞超材料中的拓扑结构在管理内部应力和防止断裂方面的潜力。该项目的中心是麦克斯韦晶格,可以包含拓扑极化状态,包括拓扑保护状态的自应力沿着内部域壁或接口。当这些晶格被加载和变形时,应力倾向于主要集中在这些界面上,即使在域中存在裂纹的情况下。因此,可以避免或显著延迟通常在裂纹尖端处观察到的有害应力集中和随后的断裂。该项目将评估这种属性,这取决于晶格的散装架构,是如何保持从理想的晶格赋予完美的铰链到现实的晶格具有结构韧带。这一目标将通过基于数字图像相关性的实验表征来实现,并伴随着将拓扑断裂保护扩展到连续极限的理论发展。该奖项还将致力于确定材料本身受故障影响的拓扑保护深度,并将通过声发射监测进行实验评估。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stress focusing and damage protection in topological Maxwell metamaterials
拓扑麦克斯韦超材料中的应力集中和损伤保护
  • DOI:
    10.1016/j.ijsolstr.2023.112268
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Widstrand, Caleb;Hu, Chen;Mao, Xiaoming;Labuz, Joseph;Gonella, Stefano
  • 通讯作者:
    Gonella, Stefano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Mao其他文献

Modeling and application of DQ-sequence dynamic phasors under unbalanced AC conditions
不平衡交流工况下DQ序列动态相量的建模与应用
Coarse-grained fundamental forms for characterizing isometries of trapezoid-based origami metamaterials
用于表征基于梯形的折纸超材料等距性的粗粒度基本形式
  • DOI:
    10.1038/s41467-025-57089-x
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    James P. McInerney;Diego Misseroni;D. Zeb Rocklin;Glaucio H. Paulino;Xiaoming Mao
  • 通讯作者:
    Xiaoming Mao
Robustness of stress focusing in soft lattices under topology-switching deformation
拓扑切换变形下软晶格应力集中的鲁棒性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Caleb Widstrand;Xiaoming Mao;S. Gonella
  • 通讯作者:
    S. Gonella
Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation
简易制备 Sn 掺杂 BiOCl 光催化剂,增强光催化降解苯甲酸和罗丹明 B 的活性
Elastic heterogeneity of soft random solids
软随机固体的弹性非均匀性
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoming Mao;P. Goldbart;Xiangjun Xing;A. Zippelius
  • 通讯作者:
    A. Zippelius

Xiaoming Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Mao', 18)}}的其他基金

Collaborative Research: Unified Field Theory of Soft Amorphous Solids
合作研究:软非晶固体统一场论
  • 批准号:
    2026825
  • 财政年份:
    2020
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Continuing Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
  • 批准号:
    1741618
  • 财政年份:
    2017
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
Critical Mechanical Structures: Topology and Entropy
关键机械结构:拓扑和熵
  • 批准号:
    1609051
  • 财政年份:
    2016
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Continuing Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Alpha-arrestins' impact on cellular physiology
合作研究:α-抑制蛋白对细胞生理学的影响
  • 批准号:
    2321625
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Cellular and Biomechanical Mechanisms of Rapid Stomatal Dynamics in Grasses
合作研究:草类快速气孔动力学的细胞和生物力学机制
  • 批准号:
    2327732
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Alpha-arrestins' impact on cellular physiology
合作研究:α-抑制蛋白对细胞生理学的影响
  • 批准号:
    2321624
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234031
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Safeguarding Next-Generation Emergency Services (NG-9-1-1) over Cellular Networks: From Design to Practice
协作研究:SaTC:核心:中:通过蜂窝网络保障下一代紧急服务 (NG-9-1-1):从设计到实践
  • 批准号:
    2246050
  • 财政年份:
    2023
  • 资助金额:
    $ 23.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了