EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport

EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料

基本信息

项目摘要

In this research, physicists, wave mechanicians and materials scientists will come together to design, fabricate and characterize novel metamaterials with nonreciprocal wave propagation attributes. The field of sound waves, which represent the oldest way of communication between human beings, is experiencing a revival in the context of modern material technology and engineering, with a myriad of applications ranging from medical imaging and echolocation to acoustic cloaking. A fundamental principle governing wave propagation in both fluid and solid media, called "reciprocity", is that the transmission rate of waves must be equal forward and backward between any two arbitrarily selected points in a medium. The ability to break this principle, that is, the realization of one-directional mechanical or acoustic "diodes" will enable the design of new classes of mechanical systems with novel functionalities, including adaptive sensors and vibration isolation devices. It will also provide a transformative contribution to the emerging field of material logic, a design paradigm where simple structural and material modules are used as the engineering building blocks to create mechanical devices of arbitrary complexity. The core conceptual ideas behind the research originate from the notion of "topological protection", which is exploited to obtain wave propagation properties that are robust against disorder and noise. The knowledge developed through this research will advance technologies, including but not limited to: a) mechanical computing, where acoustic logic ports can be seen as building blocks capable of carrying out an array of mathematical operations, and b) devices with novel thermal transport properties, exploiting the analogy between thermal phonons and mechanical vibrations at the spatial and temporal scales of mechanical devices. The research will also be disseminated to the broader community through a workshop with public tutorials, broaden the participation of underrepresented groups in STEM fields through enhancing existing programs at the different academic institutions and will result in YouTube videos to share the discoveries with the general public.This project will develop a fundamental understanding of how the phonon band topology governs the acoustic properties of systems experiencing spatial-temporal modulation, leading to a formal interpretation framework for this type of time-reversal symmetry breaking phenomena. The powerful toolkits to be developed through the project will allow for a rich variety of designs beyond the current boundaries of the use of topological states in acoustic wave control strategies. The research will span frontiers of condensed matter physics, wave mechanics, and materials science. The two main conceptual ideas to be used for the realization of topologically protected nonreciprocal wave propagation are: (1) program the phonon band structure in spatial-temporal modulated materials using principles of topological band theory, and (2) exploit the contrasting wave propagation properties of Maxwell lattices in their metal-like and topological insulator-like phases. The research team will advance the theoretical understanding of the intimate role played by topological protection in nonreciprocal wave propagation, use state-of-the-art fabrication techniques to realize prototypes of acoustic diodes at different scales using a variety of material platforms, and deploy laser-enabled wave reconstruction capabilities to characterize the nonreciprocal wave propagation phenomena in the fabricated metamaterial specimen. By developing and applying principles of topology and material logic design across the scales, the project will transform a set of simple mechanical components into a versatile platform for the next generation acoustic logic ports with programmable acoustic transport and time reversal symmetry breaking capabilities.
在这项研究中,物理学家、波浪机械学家和材料科学家将共同设计、制造和表征具有非互易波传播属性的新型超材料。声波代表着人类之间最古老的交流方式,在现代材料技术和工程的背景下,声波领域正在经历复兴,从医学成像和回声定位到声隐身,有着无数的应用。控制波在流体和固体介质中传播的一个基本原理称为“互易”,即波在介质中任意两个点之间的正反向传输速率必须相等。打破这一原则的能力,即实现单向机械或声学“二极管”,将使设计具有新功能的新型机械系统成为可能,包括自适应传感器和隔振装置。它还将为新兴的材料逻辑领域做出革命性的贡献,这是一种设计范式,简单的结构和材料模块被用作工程构建块,以创造任意复杂的机械设备。这项研究背后的核心概念源于“拓扑保护”的概念,它被用来获得对无序和噪声具有健壮性的波传播特性。通过这项研究开发的知识将推动技术进步,包括但不限于:a)机械计算,其中声逻辑端口可被视为能够执行一系列数学运算的积木,以及b)具有新的热传输特性的设备,利用机械设备的空间和时间尺度上的热声子和机械振动之间的类比。这项研究还将通过一个带有公共教程的研讨会向更广泛的社区传播,通过加强不同学术机构的现有项目来扩大STEM领域未被充分代表的群体的参与,并将导致YouTube视频与公众分享这些发现。该项目将发展对声子带拓扑如何管理经历时空调制的系统的声学性质的基本理解,导致对这种类型的时间反转对称破坏现象的正式解释框架。通过该项目开发的强大工具包将允许丰富多样的设计,超越目前在声波控制策略中使用拓扑状态的界限。这项研究将跨越凝聚态物理、波力学和材料科学的前沿。实现拓扑保护的非互易波传播的两个主要概念是:(1)利用拓扑带理论的原理对时空调制材料中的声子能带结构进行编程;(2)利用麦克斯韦晶格在类金属相和拓扑绝缘体相中的对比波传播特性。研究小组将推进对拓扑保护在非互易波传播中所起的密切作用的理论理解,使用最先进的制造技术,使用各种材料平台实现不同尺度的声学二极管原型,并部署激光使能波重建能力,以表征所制作的超材料样品中的非互易波传播现象。通过开发和应用跨尺度的拓扑和材料逻辑设计原则,该项目将把一套简单的机械部件转变为具有可编程声传输和时间反转对称打破能力的下一代声逻辑端口的通用平台。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological Boundary Floppy Modes in Quasicrystals
  • DOI:
    10.1103/physrevx.9.021054
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Di Zhou;Leyou Zhang;Xiaoming Mao
  • 通讯作者:
    Di Zhou;Leyou Zhang;Xiaoming Mao
Topological insulators and higher-order topological insulators from gauge-invariant one-dimensional lines
  • DOI:
    10.1103/physrevb.102.085108
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Heqiu Li;K. Sun
  • 通讯作者:
    Heqiu Li;K. Sun
Topologically induced prescrambling and dynamical detection of topological phase transitions at infinite temperature
  • DOI:
    10.1103/physrevb.101.104415
  • 发表时间:
    2020-03-19
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dag, Ceren B.;Duan, L-M;Sun, Kai
  • 通讯作者:
    Sun, Kai
Magnetic-Field-Induced Quantum Phase Transitions in a van der Waals Magnet
范德华磁体中磁场诱发的量子相变
  • DOI:
    10.1103/physrevx.10.011075
  • 发表时间:
    2020-03-31
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Li, Siwen;Ye, Zhipeng;Zhao, Liuyan
  • 通讯作者:
    Zhao, Liuyan
Pfaffian Formalism for Higher-Order Topological Insulators
  • DOI:
    10.1103/physrevlett.124.036401
  • 发表时间:
    2020-01-22
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Li, Heqiu;Sun, Kai
  • 通讯作者:
    Sun, Kai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Mao其他文献

Modeling and application of DQ-sequence dynamic phasors under unbalanced AC conditions
不平衡交流工况下DQ序列动态相量的建模与应用
Coarse-grained fundamental forms for characterizing isometries of trapezoid-based origami metamaterials
用于表征基于梯形的折纸超材料等距性的粗粒度基本形式
  • DOI:
    10.1038/s41467-025-57089-x
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    James P. McInerney;Diego Misseroni;D. Zeb Rocklin;Glaucio H. Paulino;Xiaoming Mao
  • 通讯作者:
    Xiaoming Mao
Robustness of stress focusing in soft lattices under topology-switching deformation
拓扑切换变形下软晶格应力集中的鲁棒性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Caleb Widstrand;Xiaoming Mao;S. Gonella
  • 通讯作者:
    S. Gonella
Facile preparation of Sn-doped BiOCl photocatalyst with enhanced photocatalytic activity for benzoic acid and rhodamine B degradation
简易制备 Sn 掺杂 BiOCl 光催化剂,增强光催化降解苯甲酸和罗丹明 B 的活性
Elastic heterogeneity of soft random solids
软随机固体的弹性非均匀性
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoming Mao;P. Goldbart;Xiangjun Xing;A. Zippelius
  • 通讯作者:
    A. Zippelius

Xiaoming Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Mao', 18)}}的其他基金

Collaborative Research: Unified Field Theory of Soft Amorphous Solids
合作研究:软非晶固体统一场论
  • 批准号:
    2026825
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cellular Metamaterials that Localize Stress - Towards a Topological Protection against Fracture
合作研究:局部化应力的细胞超材料——实现拓扑防断裂
  • 批准号:
    2026794
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Critical Mechanical Structures: Topology and Entropy
关键机械结构:拓扑和熵
  • 批准号:
    1609051
  • 财政年份:
    2016
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
  • 批准号:
    1849079
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
  • 批准号:
    1741660
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
  • 批准号:
    1741673
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
  • 批准号:
    1741666
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
  • 批准号:
    1741694
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
  • 批准号:
    1741693
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
  • 批准号:
    1741565
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
  • 批准号:
    1741677
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
  • 批准号:
    1741685
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-reciprocal, topologically protected propagation using atomically thin materials for nanoscale devices
EFRI NewLAW:使用原子级薄材料用于纳米级设备的非互易、拓扑保护传播
  • 批准号:
    1741691
  • 财政年份:
    2017
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了