RAPID: Explainable Machine Learning for Analysis of COVID-19 Chest CT
RAPID:用于分析 COVID-19 胸部 CT 的可解释机器学习
基本信息
- 批准号:2026809
- 负责人:
- 金额:$ 10.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In December 2019, it was discovered that a widely contagious pneumonia was caused by a new coronavirus infection now named COVID-19. The primary test for detection of the virus is real-time polymerase chain reaction (RT-PCR) with sensitivity of approximately 71% in some studies. However, this test may require several days to provide a result. Perhaps more importantly, imaging with x-ray or computed tomography (CT) are required to confirm pneumonia, which is the principal cause of death, as it leads to acute respiratory distress syndrome (ARDS). Recent studies have shown sensitivity of chest CT for approximately 98% for COVID-19 pneumonia and could provide immediate results but currently require human interpretation. Given the need for rapid, more accurate diagnosis, this project will use, adapt, and evaluate explainable machine learning techniques to diagnosis of COVID-19 pneumonia. This project will improve the understanding of mechanisms of COVID-19 and will help mitigate its impacts.Viral nucleic acid detection using real-time polymerase chain reaction (RT-PCR) is the primary method for diagnosis of COVID-19 infection, which has rapidly spread worldwide as a global pandemic. Sensitivity of this test for COVID-19 infection has been estimated at approximately 71% in some studies and may require several days for a result. X-ray and CT imaging are complementary technologies that allow diagnosis of COVID-19 pneumonia, which can evolve to acute respiratory distress syndrome (ARDS) -- the principal cause of death in patients with COVID-19 infection. Especially early in the course of the disease, chest CT has multiple advantages over RT-PCR yielding results more quickly and is already widely deployed, but requires expert radiologist interpretation. The number of chest CTs may rapidly exceed the speed and capacity of already strained radiologists. An explainable machine learning algorithm may address this disadvantage to expedite the interpretation of chest CT and assist rapid triage of patients to the ICU, inpatient ward, monitoring unit, or home self-quarantine. Machine learning algorithms, specifically those leveraging deep convolutional neural networks (deep learning), have the potential for facilitating even more rapid diagnosis within minutes. This project seeks to validate the use of explainable deep learning methods to adjust diagnostic operating points for multiple applications, including (a) disease screening, (b) disease staging and prognostication, and (c) evaluation of treatment response.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019年12月,人们发现一种广泛传染性的肺炎是由一种现在被命名为COVID-19的新型冠状病毒感染引起的。检测该病毒的主要方法是实时聚合酶链反应(RT-PCR),在一些研究中灵敏度约为71%。但是,该测试可能需要几天才能提供结果。也许更重要的是,需要x射线或计算机断层扫描(CT)成像来确认肺炎,这是死亡的主要原因,因为它会导致急性呼吸窘迫综合征(ARDS)。最近的研究表明,胸部CT对COVID-19肺炎的敏感性约为98%,可以立即提供结果,但目前需要人工解释。鉴于对快速、更准确诊断的需求,该项目将使用、调整和评估可解释的机器学习技术来诊断COVID-19肺炎。该项目将增进对COVID-19机制的理解,并有助于减轻其影响。实时聚合酶链反应(RT-PCR)病毒核酸检测是新型冠状病毒感染诊断的主要方法,目前新型冠状病毒感染已成为全球大流行,在全球范围内迅速蔓延。在一些研究中,该测试对COVID-19感染的敏感性估计约为71%,可能需要几天才能得出结果。x射线和CT成像是可用于诊断COVID-19肺炎的互补技术,COVID-19肺炎可发展为急性呼吸窘迫综合征(ARDS),这是COVID-19感染患者的主要死亡原因。特别是在疾病的早期,胸部CT比RT-PCR有很多优势,可以更快地得出结果,并且已经被广泛应用,但需要放射科专家的解释。胸部ct的数量可能会迅速超过已经紧张的放射科医生的速度和能力。一种可解释的机器学习算法可以解决这一缺点,以加快胸部CT的解释,并帮助患者快速分类到ICU、住院病房、监护单元或家庭自我隔离。机器学习算法,特别是那些利用深度卷积神经网络(深度学习)的算法,有可能在几分钟内促进更快的诊断。该项目旨在验证可解释的深度学习方法的使用,以调整多种应用的诊断操作点,包括(a)疾病筛查,(b)疾病分期和预后,以及(c)治疗反应评估。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deployment of artificial intelligence for radiographic diagnosis of COVID-19 pneumonia in the emergency department.
- DOI:10.1002/emp2.12297
- 发表时间:2020-12
- 期刊:
- 影响因子:2.3
- 作者:Carlile M;Hurt B;Hsiao A;Hogarth M;Longhurst CA;Dameff C
- 通讯作者:Dameff C
User-Centric Enhancements to Explainable AI Algorithms for Image Classification
以用户为中心的可解释人工智能图像分类算法的增强
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Severine Soltani, Robert Kaufman
- 通讯作者:Severine Soltani, Robert Kaufman
Deep Learning Radiographic Assessment of Pulmonary Edema: Optimizing Clinical Performance, Training With Serum Biomarkers
肺水肿的深度学习放射学评估:优化临床表现,使用血清生物标志物进行训练
- DOI:10.1109/access.2022.3172706
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Huynh, Justin;Masoudi, Samira;Noorbakhsh, Abraham;Mahmoodi, Amin;Kligerman, Seth;Yen, Andrew;Jacobs, Kathleen;Hahn, Lewis;Hasenstab, Kyle;Pazzani, Michael
- 通讯作者:Pazzani, Michael
Expert-Informed, User-Centric Explanations for Machine Learning
由专家提供信息、以用户为中心的机器学习解释
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Michael Pazzani;Severine Soltani, Robert Kaufman
- 通讯作者:Severine Soltani, Robert Kaufman
Generating Explanations for Chest Medical Scan Pneumonia Predictions
生成胸部医学扫描肺炎预测的解释
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Samson Qian
- 通讯作者:Samson Qian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Pazzani其他文献
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
- DOI:
10.1007/pl00011669 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:3.100
- 作者:
Eamonn Keogh;Kaushik Chakrabarti;Michael Pazzani;Sharad Mehrotra - 通讯作者:
Sharad Mehrotra
A Computational Theory of Learning Causal Relationship^
学习因果关系的计算理论^
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Reiationships;Michael Pazzani - 通讯作者:
Michael Pazzani
Review of "Inductive Logic Programming: Techniques and Applications" by Nada Lavrač, Sašo Džeroski
- DOI:
10.1023/a:1018098519027 - 发表时间:
1996-04-01 - 期刊:
- 影响因子:2.900
- 作者:
Michael Pazzani - 通讯作者:
Michael Pazzani
CTSHIV: a knowledge-based system for the management of HIV-infected patients
CTSHIV:用于管理艾滋病毒感染者的知识系统
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Michael Pazzani;Darryl See;Ranjit Iyer;Edison Schroeder;Jeremiah Tilles - 通讯作者:
Jeremiah Tilles
A Reply to Cohen's Book Review of Creating a Memory of Causal Relationships
- DOI:
10.1023/a:1022657309981 - 发表时间:
1993-02-01 - 期刊:
- 影响因子:2.900
- 作者:
Michael Pazzani - 通讯作者:
Michael Pazzani
Michael Pazzani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Pazzani', 18)}}的其他基金
CC*IIE Networking Infrastructure: University of California Riverside's Science DMZ
CC*IIE 网络基础设施:加州大学河滨分校的 Science DMZ
- 批准号:
1440543 - 财政年份:2014
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
From Computer Data to Human Knowledge: A Cognitive Approach to Knowlege Discovery and Data Mining
从计算机数据到人类知识:知识发现和数据挖掘的认知方法
- 批准号:
9731990 - 财政年份:1998
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Learning Probabilistic Relational Concepts
学习概率关系概念
- 批准号:
9310413 - 财政年份:1994
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Long and Medium-Term Research: Information-Based Approachesto Learning Relational Concepts
长期和中期研究:基于信息的关系概念学习方法
- 批准号:
9201842 - 财政年份:1992
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Research Initiation: Induction of Casual Theories
研究启动:休闲理论归纳
- 批准号:
8908260 - 财政年份:1989
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
相似海外基金
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
$ 10.16万 - 项目类别:
Linkage Projects
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 10.16万 - 项目类别:
Research Grant
An Explainable Machine Learning Platform for Single Cell Data Analysis
用于单细胞数据分析的可解释机器学习平台
- 批准号:
2313865 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
- 批准号:
2322713 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
- 批准号:
2321063 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
A machine learning framework for trustworthy bio-medical risk factor identification – robust, explainable, and human-centred detection of endo- and phenotypes in lung cancer
用于识别值得信赖的生物医学风险因素的机器学习框架——对肺癌的内型和表型进行稳健、可解释且以人为本的检测
- 批准号:
10068410 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Collaborative R&D
Development of an Explainable Machine Learning Method to Predict Disease Risk from Genotype
开发一种可解释的机器学习方法来根据基因型预测疾病风险
- 批准号:
22KJ0657 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Data-efficient and explainable machine learning
数据高效且可解释的机器学习
- 批准号:
2644086 - 财政年份:2022
- 资助金额:
$ 10.16万 - 项目类别:
Studentship
State-dependent decadal predictability identified with explainable machine learning
通过可解释的机器学习确定依赖于状态的十年可预测性
- 批准号:
2210068 - 财政年份:2022
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Explainable Machine learning models for AI native radio access technologies (XAI-RAT)
AI 原生无线电接入技术 (XAI-RAT) 的可解释机器学习模型
- 批准号:
RGPIN-2022-04645 - 财政年份:2022
- 资助金额:
$ 10.16万 - 项目类别:
Discovery Grants Program - Individual