ATD: Collaborative Research: Computationally Efficient Algorithms for Detecting Anomalous Atmospheric Emissions
ATD:协作研究:用于检测异常大气排放的计算高效算法
基本信息
- 批准号:2026835
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Large-scale anomalous emissions of greenhouse gases and air pollution pose threats to human health in the vicinity of the emissions, compromise state emissions targets, and threaten energy security. Two recent, high-profile natural gas blowouts underscore the need for early detection and intervention. Several new and forthcoming satellites have the specific purpose of detecting and monitoring greenhouse gas emissions, and recent studies have demonstrated the potential of detecting such events using satellite data. However, there are enormous computational challenges in quantifying these emission anomalies or super-emitters due to the massive amounts of satellite data to be processed and the fine-scale resolution at which reconstructions are needed for threat detection. This project aims to tackle these challenges by developing improved computational methods for use in detection of atmospheric emissions. The project supports one graduate per year at each of the three universities.The project aims to address fundamental issues in the development of computationally efficient solvers for inverse problems, and to push the traditional boundaries of threat detection via satellites by enabling researchers to detect and monitor anomalous atmospheric emissions quickly, accurately, and with quantifiable uncertainty. The main thrusts of this project are (i) efficient incorporation of prior information and parameter selection, (ii) improved spatio-temporal inverse modeling with multiple stochastic components and cost-cutting inexact and sampling approaches to handle expensive adjoint models, and (iii) evaluations, testing, and integration of the developed methods via case studies with synthetic satellite data. The aim of this project is to help identify potential immediate threats (e.g., oil and gas blowouts) using satellites, which have significant broader impacts not only in disaster response and recovery but also in minimizing the long-term environmental risks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
温室气体的大规模异常排放和空气污染对排放附近的人类健康构成威胁,损害国家排放目标,并威胁能源安全。 最近发生的两起引人注目的天然气井喷事件突出表明,需要及早发现和干预。一些新的和即将发射的卫星具有探测和监测温室气体排放的具体目的,最近的研究表明,利用卫星数据探测这类事件具有潜力。然而,由于需要处理大量的卫星数据,以及威胁检测需要重建的精细尺度分辨率,因此在量化这些排放异常或超级排放者方面存在巨大的计算挑战。该项目旨在通过开发用于检测大气排放的改进计算方法来应对这些挑战。该项目每年资助三所大学各一名毕业生,旨在解决逆问题高效计算求解器开发中的基本问题,并通过使研究人员能够快速、准确地检测和监测异常大气排放,并以可量化的不确定性来推动通过卫星进行威胁检测的传统界限。该项目的主要目标是(一)有效地结合先验信息和参数选择,(二)改进的时空逆建模与多个随机组件和成本削减不精确和采样方法来处理昂贵的伴随模型,和(iii)评估,测试,并通过案例研究与合成卫星数据的开发方法的集成。该项目的目的是帮助识别潜在的直接威胁(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hybrid Projection Methods for Solution Decomposition in Large-Scale Bayesian Inverse Problems
大规模贝叶斯逆问题解分解的混合投影方法
- DOI:10.1137/22m1502197
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Chung, Julianne;Jiang, Jiahua;Miller, Scot M.;Saibaba, Arvind K.
- 通讯作者:Saibaba, Arvind K.
Computationally efficient methods for large-scale atmospheric inverse modeling
大规模大气反演模拟的计算高效方法
- DOI:10.5194/gmd-15-5547-2022
- 发表时间:2022
- 期刊:
- 影响因子:5.1
- 作者:Cho, Taewon;Chung, Julianne;Miller, Scot M.;Saibaba, Arvind K.
- 通讯作者:Saibaba, Arvind K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scot Miller其他文献
Scot Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scot Miller', 18)}}的其他基金
CAREER: Methane emissions from the US and Canada -- novel insights from an expanding observation network
职业:美国和加拿大的甲烷排放——来自不断扩大的观测网络的新见解
- 批准号:
2237404 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Collaborative research: US emissions of sulfuryl fluoride, a pesticide and potent greenhouse gas
合作研究:美国硫酰氟(一种杀虫剂和强效温室气体)的排放
- 批准号:
2121641 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant