RAPID: Conformal, Anti-viral Nanofilms on Personal Protective equipmenT materials to combat CoronavirUs tRansmission/sequEstration (CAPTURE)
RAPID:个人防护设备材料上的保形抗病毒纳米薄膜可对抗冠状病毒传播/隔离(CAPTURE)
基本信息
- 批准号:2027489
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the current state of pandemic COVID 19, use of personal protective equipment e.g. medical gowns, gloves, facemasks, etc.) stand as the primary line of defense for preventing infection. Communication of the pathogen occurs directly, from person to person, as well as through cross-contamination from surface to surface. Current forms of personal protective equipment only provide user protection from infection by functioning as a physical barrier. Incorporation of virus-binding polymers and anti-viral nanomaterials with current forms of personal protective equipment can allow the ‘capture’ and ‘killing’ of virus species: protecting medical personnel/first responders and subsequently preventing the spread of contagions, such as the novel coronavirus. This RAPID proposal, supported by the nanoscale interaction program in the Division of Chemical, Bioengineering, Environmental, and Transport Systems, explores the nano-scale interactions between virus species and medically relevant nanomaterials. The project will utilize bio-compatible polymer nanolayers embedded with local UV light emitting nanoparticles as a model system for the future design of nanomaterial-based anti-viral coatings. Results from this study will demonstrate the efficacy of such nanomaterial platforms towards inactivating harmful viral pathogens as well as elucidate virus-biomedical material interactions. Such valuable information will be disseminated to the public for better design of improved and more effective personal protective equipment in the containment of coronavirus and other pathogens. Viral pathogens pose a significant threat to humanity. The COVID-19 pandemic typifies this threat with substantial, crippling impact on the global social structures and economics already felt. Current forms of personal protective equipment function solely as physical barriers to infection/viral transmission (e.g. hospital gowns, medical face masks, gloves, etc.). Ideal personal protective equipment should directly inactivate the virus, upon contact: thereby assuring against user infection as well as preventing cross-contamination through surface to surface contact. In this RAPID project, we propose the design of a multi-layer, bio-compatible nano-polymer coating on personal protective equipment surfaces. These layers will further be seeded with complex oxide nanoparticles which absorb white/natural light and release local UV light to inactivate adsorbed virus agents. Additionally, specific polymers in the coating will be chemically modified with virus surface protein binding oligomeric molecules. The advantage of studying such interaction is twofold: (1) surface proteins are blocked from interacting with host cells (preventing infection) and (2) virus species are retained at the personal protective equipment surface allowing sufficient dosing of nanoparticle-mediated UV light. The combination of anti-viral nanoparticles and virus-selective oligomers will function as a model for future, nanomaterial-based, products effecting a ‘capture’ and ‘kill’ approach. Specifically, this interdisciplinary study between engineering and biomedical sciences will highlight nanoscale binding interactions (oligomer-protein, polymer-virus membrane) and the efficacy of nano-emitters in anti-viral platforms. The data collected will educate and inform the general public on diverse, relevant subjects; including outreach to various audiences. The model is designed to be highly generalizable to other virus types and for incorporation of nanomaterials with varying chemical, optical, or biological modes of action.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当前COVID 19大流行的情况下,使用个人防护设备(如医用长袍、手套、口罩等)作为预防感染的主要防线。病原体的传播直接发生在人与人之间,以及通过地表与地表的交叉污染。目前形式的个人防护设备仅通过充当物理屏障来保护用户免受感染。将病毒结合聚合物和抗病毒纳米材料与当前形式的个人防护设备结合,可以“捕获”和“杀死”病毒物种:保护医务人员/第一反应人员,并随后防止传染病的传播,如新型冠状病毒。这个快速的建议,在化学,生物工程,环境和运输系统部门的纳米级相互作用计划的支持下,探讨了病毒种类和医学相关的纳米材料之间的纳米级相互作用。该项目将利用嵌入局部紫外光发射纳米颗粒的生物相容性聚合物纳米层作为未来设计基于纳米材料的抗病毒涂层的模型系统。这项研究的结果将证明这种纳米材料平台对灭活有害病毒病原体的有效性,并阐明病毒-生物医学材料相互作用。这些宝贵的信息将分发给公众,以便更好地设计更好和更有效的个人防护设备,以遏制冠状病毒和其他病原体。病毒病原体对人类构成重大威胁。COVID-19大流行是这一威胁的典型代表,对全球社会结构和经济产生了重大的破坏性影响。目前形式的个人防护设备仅作为感染/病毒传播的物理屏障(例如,医院长袍、医用口罩、手套等)。理想的个人防护设备应该在接触时直接抑制病毒:从而确保用户免受感染,并防止通过表面与表面接触的交叉污染。在这个RAPID项目中,我们提出了一个多层,生物相容性纳米聚合物涂层的个人防护设备表面的设计。这些层将进一步用复合氧化物纳米颗粒接种,其吸收白色/自然光并释放局部UV光以吸收吸附的病毒剂。此外,涂层中的特定聚合物将用病毒表面蛋白结合寡聚分子进行化学修饰。研究这种相互作用的优点是双重的:(1)表面蛋白质被阻止与宿主细胞相互作用(防止感染),(2)病毒种类被保留在个人防护设备表面,允许纳米颗粒介导的UV光的足够剂量。抗病毒纳米颗粒和病毒选择性低聚物的组合将作为未来基于纳米材料的产品的模型,实现“捕获”和“杀死”方法。具体而言,工程和生物医学科学之间的跨学科研究将突出纳米级结合相互作用(寡聚体蛋白质,聚合物病毒膜)和纳米发射体在抗病毒平台中的功效。收集的数据将教育和告知公众各种相关的主题,包括对各种受众的宣传。该模型的设计是高度推广到其他病毒类型和纳米材料与不同的化学,光学或生物学模式的行动。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudipta Seal其他文献
Combination of cerium oxide nanoparticles and antimalarial drug chloroquine: characterization and anti-cancer potential for triple negative breast cancer
氧化铈纳米粒子与抗疟药氯喹的组合:三阴性乳腺癌的表征及抗癌潜力
- DOI:
10.1016/j.matdes.2025.114179 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.900
- 作者:
Chantal-Kristin Wenzel;Elayaraja Kolanthai;Craig Neal;Claudia Wyrich;Andrea Borchardt;Claudia von Montfort;Nahal Brocke-Ahmadinejad;Sudipta Seal;Peter Brenneisen - 通讯作者:
Peter Brenneisen
Cerium Oxide Nanoparticle-miR146a Decreases Inflammation in a Murine Dextran Sodium Sulfate Colitis Model
- DOI:
10.1016/j.jamcollsurg.2019.08.208 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:
- 作者:
Lindel K. Dewberry;Carlos Zgheib;Sarah A. Hilton;Sudipta Seal;Jake Newsom;Melissa D. Krebs;Junyi Hu;Junwang Xu;Kenneth W. Liechty - 通讯作者:
Kenneth W. Liechty
In-situ crack propagation dynamics in multicomponent ultra-high temperature carbides
- DOI:
10.1016/j.ijrmhm.2024.106897 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Ambreen Nisar;Sohail M.A.K. Mohammed;Gia Garino;Udit Kumar;Denny John;Brandon A. Aguiar;Sudipta Seal;Arvind Agarwal - 通讯作者:
Arvind Agarwal
Exploring lignin potential on polyurethane-silica hybrid coatings tribological, anticorrosive and bactericidal properties
- DOI:
10.1016/j.porgcoat.2024.108882 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Álvaro G. Braz;Samarah V. Harb;Andressa Trentin;Elayaraja Kolanthai;Asta Nurmela;Sandra H. Pulcinelli;Janne Pakarinen;Sudipta Seal;Celso V. Santilli - 通讯作者:
Celso V. Santilli
Nanosilk Improves the Biomechanical Properties of Human Diabetic Skin
- DOI:
10.1016/j.jamcollsurg.2018.07.222 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Sarah A. Hilton;Carlos Zgheib;Maggie M. Hodges;Lindel C. Dewberry;Sudipta Seal;Kenneth W. Liechty - 通讯作者:
Kenneth W. Liechty
Sudipta Seal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudipta Seal', 18)}}的其他基金
REU Site: Engineering and Nanoscience of Materials and Device Applications in Biotechnology and Medicine
REU 网站:生物技术和医学中材料和设备应用的工程和纳米科学
- 批准号:
2050266 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Conference - Nano-Micromaterials for Circular economy and Sustainability in the East Asia Pacific
会议 - 纳米微材料促进东亚太平洋地区的循环经济和可持续发展
- 批准号:
1929899 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
MRI: Acquisition of State of the Art Imaging X-Ray Photoelectron Spectroscopy: Integrating Nanotechnology, Catalysis, Physics, Manufacturing and Archaeological Research & Educa
MRI:获得最先进的成像 X 射线光电子能谱:集成纳米技术、催化、物理、制造和考古研究
- 批准号:
1726636 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Workshop: Towards the development of Sustainable Nanotechnology: A conference to bring Interdisciplinary discussion
研讨会:迈向可持续纳米技术的发展:一场跨学科讨论的会议
- 批准号:
1645479 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Unraveling the mechanism and the role of anti- inflammatory nanoparticles in multiple sclerosis model
EAGER:揭示抗炎纳米颗粒在多发性硬化症模型中的作用机制
- 批准号:
1261956 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Travel support to attend CBET conf to present nanoparticle toxicity prediction
参加 CBET 会议以展示纳米颗粒毒性预测的旅行支持
- 批准号:
1245118 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
NSF Nano workshop: Safety aspects of nanosystems and infrastructure for sustainability, Orlando, Florida, December 8-9, 2011
NSF 纳米研讨会:纳米系统和可持续基础设施的安全问题,佛罗里达州奥兰多,2011 年 12 月 8 日至 9 日
- 批准号:
1201951 - 财政年份:2011
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: Oil Optimized Particle Surfaces (OOPS)
RAPID:油优化颗粒表面 (OOPS)
- 批准号:
1049915 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: Designer nanostructures in protection of cells under harsh environment
EAGER:设计纳米结构在恶劣环境下保护细胞
- 批准号:
1007495 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
GOALI: Nanoparticle Immunotoxicology Assessment using High-Throughput Biomimicry (NIAHTB)
GOALI:使用高通量仿生学 (NIAHTB) 进行纳米颗粒免疫毒理学评估
- 批准号:
0930170 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Formal Guarantees for Neurosymbolic Programs via Conformal Prediction
职业:通过保形预测对神经符号程序提供正式保证
- 批准号:
2338777 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
- 批准号:
2246820 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Research on induced twisted representations in conformal field theory with tensor category theory
张量范畴论共形场论中诱导扭曲表示的研究
- 批准号:
23KJ0540 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Theory for convergence of discrete surfaces with conformal structures
具有共形结构的离散表面的收敛理论
- 批准号:
23H01072 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SLES: SPECSRL: Specification-guided Perception-enabled Conformal Safe Reinforcement Learning
SLES:SPECSRL:规范引导的感知启用的共形安全强化学习
- 批准号:
2331783 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Manufacturing of High-Performance Tactile Sensors by High Resolution 3D Printing and Conformal Polymer Coating
通过高分辨率 3D 打印和保形聚合物涂层制造高性能触觉传感器
- 批准号:
2318677 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mapping Class Semigroups and the Classification of Conformal Dynamical Systems
映射类半群与共形动力系统的分类
- 批准号:
2302907 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CFTSPEC: Spectra of Conformal Theories: From Trajectories, Colliders, and Numerics
CFTSPEC:共形理论谱:来自轨迹、碰撞器和数值
- 批准号:
EP/X042618/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Research Grant