CAREER: Next-generation Optical I/O with Embedded Equalization for Disaggregated AI Computing
职业:具有嵌入式均衡功能的下一代光学 I/O,适用于分解式 AI 计算
基本信息
- 批准号:2142996
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ever-increasing size and complexity of artificial intelligence (AI) and machine learning (ML) models and datasets, recently reaching over a trillion parameters, have created a vital need for vast parallelization over thousands of processing and memory units. This requires low-latency and ultra-low power multi-Tb/s inter/intra-rack optical I/O as well as chip-to-chip interconnects. Although state-of-the-art inter-chip interconnects are realized with copper-based wirelines, they cannot meet the stringent speed, energy-efficiency, and bandwidth density requirements of emerging AI supercomputers. Silicon photonic transceivers have shown a great promise to address this challenge by ultimately co-packaging optical transceivers with high performance CPU/GPUs. Co-packaged optics for the next-generation AI computing should provide tens of Tb/s aggregate data-rates at sub-pJ/b energy-efficiency and low-latency. Despite recent efforts in developing such transceivers, proposed solutions do not yet satisfy the energy and latency requirements of future inter-chip links. In this work, we aim at solving these challenges for ultra-high data-rates by proposing a new equalization paradigm and a novel system-level architecture to make co-packaged optics “smarter” than being just an electro-optical bridge as has never been imagined before. Outcomes of this project can speed up AI/ML computing hardware by enabling a truly disaggregated computing architecture down to the package level. We also plan to integrate our research methodology and modern topics into the educational curriculum by developing a new course. This course will bridge the gap between the fields of integrated circuits and photonics and will have publicly available materials for dissemination at other institutes. Our other educational plans include outreach activities for college and K-12 students and engaging underrepresented graduate and undergraduate students in this project.The most critical challenge in building energy-efficient optical I/O at high data-rates is the power-hungry equalization circuitry conventionally implemented in the electrical domain. These equalizers can consume over 50% of the total link energy and area. We will overcome this issue by radically transforming the equalization techniques, embedding the necessary equalization functionalities in reconfigurable photonic devices rather than the electronic side for the first time. This approach will be deployed for both the transmitter and receiver sides and can achieve sub-pJ/b overall link efficiency. Moreover, while co-packaged optical I/O is becoming imminent for interconnect and switching networks, we will show that these chips can be “smarter” than being just an electro-optical bridge by adding more system-level capabilities to them in this project. These new capabilities can be implemented on a co-processor unit in co-packaged optical I/O chips. In doing so, not only we can overcome the latency overhead of using optical interconnects for chip-to-chip communications, but also, we will exploit novel system-level architectures that can be unlocked by co-packaged optics. The new disaggregated AI architecture can significantly speed up the compute time for training/interference of large-scale AI/ML applications by reducing communication bottlenecks and providing direct memory access for multi-GPU systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)和机器学习(ML)模型和数据集的规模和复杂性不断增加,最近达到了超过万亿个参数,这就迫切需要在数千个处理和存储单元上进行大规模并行化。这需要低延迟和超低功耗的多Tb/s机架间/机架内光学I/O以及芯片到芯片互连。尽管最先进的芯片间互连是用铜基电线实现的,但它们无法满足新兴AI超级计算机对速度、能效和带宽密度的严格要求。硅光子收发器已经显示出通过最终将光收发器与高性能CPU/GPU共同封装来解决这一挑战的巨大前景。用于下一代人工智能计算的联合封装光学器件应该以sub-pJ/B能效和低延迟提供数十Tb/s的聚合数据速率。尽管最近在开发这种收发器方面做出了努力,但是所提出的解决方案还不能满足未来芯片间链路的能量和延迟要求。在这项工作中,我们的目标是通过提出一种新的均衡范式和一种新的系统级架构来解决超高数据速率的这些挑战,使共同封装的光学器件“更智能”,而不仅仅是一个以前从未想象过的电光桥。该项目的成果可以通过将真正的分散计算架构实现到包级别来加速AI/ML计算硬件。我们还计划通过开发新课程将我们的研究方法和现代主题融入教育课程。这门课程将弥补集成电路和光子学领域之间的差距,并将有公开的材料供其他研究所传播。我们的其他教育计划包括针对大学和K-12学生的外展活动,以及吸引代表性不足的研究生和本科生参与该项目。在高数据速率下构建节能光学I/O的最关键挑战是传统上在电气领域实现的耗电均衡电路。这些均衡器可以消耗总链路能量和面积的50%以上。我们将通过从根本上改变均衡技术来克服这个问题,首次将必要的均衡功能嵌入到可重构光子器件中,而不是电子方面。该方法将被部署用于发射机侧和接收机侧,并且可以实现sub-pJ/B总体链路效率。此外,虽然共同封装的光学I/O对于互连和交换网络来说已经迫在眉睫,但我们将通过在该项目中为它们添加更多的系统级功能来证明这些芯片可以比仅仅是电光桥更“智能”。这些新功能可以在共同封装的光学I/O芯片中的协处理器单元上实现。通过这样做,我们不仅可以克服使用光学互连进行芯片到芯片通信的延迟开销,而且还将开发可以通过共同封装的光学器件解锁的新型系统级架构。新的分散式AI架构通过减少通信瓶颈和为多GPU系统提供直接内存访问,可以显著加快大规模AI/ML应用的训练/干扰计算时间。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sajjad Moazeni其他文献
OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang - 通讯作者:
Lei Jiang
A Mixed-Signal Compute-in-Memory Architecture for Solving All-to-All Connected MAXCUT Problems with Sub-µs Time-to-Solution
一种混合信号内存计算架构,可在亚微秒内解决所有连接的 MAXCUT 问题
- DOI:
10.1109/iscas58744.2024.10558548 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Dee;Katherine Bennett;Sajjad Moazeni - 通讯作者:
Sajjad Moazeni
Sajjad Moazeni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sajjad Moazeni', 18)}}的其他基金
FET: Medium: A Hybrid Co-processing Unit (HCU) using Phase-change Photonics in CMOS for Large-scale and Ultra-fast Machine Learning Acceleration
FET:中:使用 CMOS 中相变光子学的混合协同处理单元 (HCU),用于大规模和超快的机器学习加速
- 批准号:
2105972 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
- 批准号:
2028406 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: LoRa Enabled Space-air-ground Integrated Networks for Next-Generation Agricultural IoT
职业生涯:LoRa 支持下一代农业物联网的天地一体化网络
- 批准号:
2338976 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Next Generation Online Resource Allocation
职业:下一代在线资源分配
- 批准号:
2340306 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next-Generation Flow Cytometry - A New Approach to Cell Heterogeneity
职业:下一代流式细胞术 - 细胞异质性的新方法
- 批准号:
2422750 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
- 批准号:
2340782 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Next Generation of High-Level Synthesis for Agile Architectural Design (ArchHLS)
职业:下一代敏捷架构设计高级综合 (ArchHLS)
- 批准号:
2338365 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Engineering next-generation adrenal gland organoids
职业:设计下一代肾上腺类器官
- 批准号:
2335133 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant