FET: Medium: A Hybrid Co-processing Unit (HCU) using Phase-change Photonics in CMOS for Large-scale and Ultra-fast Machine Learning Acceleration

FET:中:使用 CMOS 中相变光子学的混合协同处理单元 (HCU),用于大规模和超快的机器学习加速

基本信息

  • 批准号:
    2105972
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

A new wave of technological revolution — ignited by recent developments in artificial intelligence (AI) and machine learning (ML) based on neural networks — is transforming life in numerous ways. The implementation of large-scale artificial neural networks, however, challenges conventional computing paradigms and hardware platforms by demanding enormous computing power at a much faster pace than Moore’s law supports. Optical neural networks (ONNs) have long been proposed as a promising alternative by providing ultra-fast and energy-efficient computing utilizing the distinct advantages of light as opposed to electricity. However, current approaches lack the efficiency, scalability, and programmability that is needed for real-world AI applications. More importantly, such optical processing units will be only practical if they can be seamlessly and efficiently integrated with existing CMOS-based high-performance processors such as CPU/GPUs. Without such scalability and integration, the energy, speed, and latency benefits of ONNs would be compromised by the need for data and model movement in/out of the optical processor. The goal of this project is to develop a hybrid co-processor unit (HCU) to solve these challenges and demonstrate a large-scale, fully integrated ONN suitable for large-scale AI/ML computations. The societal impact of AI cloud systems with sustainable energy consumption and computing power that are afforded by this research will be tremendous. Education and outreach activities of this program include course development in optical computing and AI hardware design, as well as K-12 science outreach programs with publicly accessible online courses.The HCU is being realized through the monolithic integration of emerging phase-change material (PCM) with an advanced silicon photonic process. This strategy allows thousands of photonic elements and millions of transistors to be fabricated together in a single CMOS process in a cost-effective and scalable manner. Additionally, the proposed HCU can be heterogeneously co-packaged with a CPU/GPU to minimize the energy and latency overhead of data/model movement. This project aims to combine the complementary strengths of photonics and electronics for AI/ML acceleration: photonics for high-speed and energy-efficient computation of linear operations using a non-volatile cross-bar network, and electronics for nonlinear high-precision activations and control circuitry. The energy and areal computing density of the HCU will be over an order of magnitude larger than today’s GPUs. The development of HCUs is also timely as optical interconnect has already been penetrating deeper into datacenters and supercomputers toward inter-chip connections. In addition to cloud-base AI/ML, the proposed HCU has tremendous advantages for latency- and power-sensitive applications such as autonomous vehicles, robotics, space missions, and defense operations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由人工智能(AI)和基于神经网络的机器学习(ML)的最新发展引发的新一轮技术革命正在以多种方式改变生活。然而,大规模人工神经网络的实现通过以比摩尔定律支持的快得多的速度要求巨大的计算能力来挑战传统的计算范例和硬件平台。光学神经网络(ONN)长期以来一直被认为是一种有前途的替代方案,它利用光而不是电的独特优势提供超快速和节能的计算。然而,目前的方法缺乏现实世界AI应用所需的效率,可扩展性和可编程性。更重要的是,这种光学处理单元只有在能够与现有的基于CMOS的高性能处理器(如CPU/GPU)无缝、高效地集成时才是实用的。如果没有这样的可扩展性和集成,ONN的能量、速度和延迟优势将因需要数据和模型移入/移出光学处理器而受到损害。该项目的目标是开发一个混合协处理器单元(HCU)来解决这些挑战,并展示一个适合大规模AI/ML计算的大规模、完全集成的ONN。这项研究所提供的具有可持续能源消耗和计算能力的人工智能云系统的社会影响将是巨大的。该计划的教育和推广活动包括光学计算和人工智能硬件设计的课程开发,以及K-12科学推广计划,可公开访问的在线课程。HCU正在通过新兴相变材料(PCM)与先进硅光子工艺的单片集成来实现。这种策略允许以具有成本效益和可扩展的方式在单个CMOS工艺中一起制造数千个光子元件和数百万个晶体管。此外,所提出的HCU可以与CPU/GPU异构地共同封装,以最小化数据/模型移动的能量和延迟开销。该项目旨在联合收割机结合光子学和电子学的互补优势,用于AI/ML加速:光子学用于使用非易失性交叉网络进行高速和节能的线性运算计算,电子学用于非线性高精度激活和控制电路。HCU的能量和面积计算密度将比今天的GPU大一个数量级。HCU的发展也是及时的,因为光学互连已经深入到芯片间连接的嵌入式计算机和超级计算机中。除了基于云的人工智能/机器学习之外,拟议的HCU在自动驾驶汽车、机器人技术、太空任务和国防行动等延迟和功耗敏感型应用方面也具有巨大优势。该奖项反映了NSF的法定使命,并且通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EXMA: A Genomics Accelerator for Exact-Matching
MindReading: An Ultra-Low-Power Photonic Accelerator for EEG-based Human Intention Recognition
PriML: An Electro-Optical Accelerator for Private Machine Learning on Encrypted Data
PriML:用于加密数据私人机器学习的光电加速器
Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters
  • DOI:
    10.1364/oe.446984
  • 发表时间:
    2022-04-11
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Erickson, John R.;Shah, Vivswan;Xiong, Feng
  • 通讯作者:
    Xiong, Feng
Coherent Photonic Crossbar Arrays for Large-Scale Matrix-Matrix Multiplication
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sajjad Moazeni其他文献

OFHE: An Electro-Optical Accelerator for Discretized TFHE
OFHE:用于离散化 TFHE 的电光加速器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meng Zheng;Cheng Chu;Qian Lou;Nathan Youngblood;Mo Li;Sajjad Moazeni;Lei Jiang
  • 通讯作者:
    Lei Jiang
A Mixed-Signal Compute-in-Memory Architecture for Solving All-to-All Connected MAXCUT Problems with Sub-µs Time-to-Solution
一种混合信号内存计算架构,可在亚微秒内解决所有连接的 MAXCUT 问题

Sajjad Moazeni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sajjad Moazeni', 18)}}的其他基金

CAREER: Next-generation Optical I/O with Embedded Equalization for Disaggregated AI Computing
职业:具有嵌入式均衡功能的下一代光学 I/O,适用于分解式 AI 计算
  • 批准号:
    2142996
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
EAGER: SARE: Secure LiDAR Systems with Frequency Encryption
EAGER:SARE:具有频率加密功能的安全 LiDAR 系统
  • 批准号:
    2028406
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似海外基金

CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241796
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
  • 批准号:
    2241795
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SaTC: TTP: Medium: Hardware Intellectual Property Protection through Hybrid ASIC/TRAP Integrated Circuit Design
SaTC:TTP:中:通过混合 ASIC/TRAP 集成电路设计保护硬件知识产权
  • 批准号:
    2155208
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: Hybrid Twins for Urban Transportation: From Intersections to Citywide Management
CPS:中:城市交通的混合双胞胎:从十字路口到全市管理
  • 批准号:
    2038984
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Study on Spectroscopic Feature of Hybrid Randam Scatter Medium
混合随机散射介质的光谱特性研究
  • 批准号:
    19K05310
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NeTS: Small: RUI: Hybrid Visible-Light and Radio-Frequency Communications with Integrated Medium-Access Control
NeTS:小型:RUI:具有集成介质访问控制的混合可见光和射频通信
  • 批准号:
    1618646
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Mild Hybrid Medium Commercial Vehicle Proof of Concept
轻度混合动力中型商用车概念验证
  • 批准号:
    132241
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Feasibility Studies
Hybrid Power Electronic Interface for Medium Voltage Motor Drive Applications.
适用于中压电机驱动应用的混合电力电子接口。
  • 批准号:
    482957-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 120万
  • 项目类别:
    University Undergraduate Student Research Awards
RI: Medium: Collaborative Research: Hybrid Unmanned Aerial Vehicles that Interact with Surfaces
RI:中:协作研究:与表面交互的混合无人机
  • 批准号:
    1161679
  • 财政年份:
    2012
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Hybrid Unmanned Aerial Vehicles that Interact with Surfaces
RI:中:协作研究:与表面交互的混合无人机
  • 批准号:
    1161909
  • 财政年份:
    2012
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了