Recycling and separation of critical elements using porous materials

使用多孔材料回收和分离关键元素

基本信息

  • 批准号:
    2028498
  • 负责人:
  • 金额:
    $ 34.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Critical metallic elements, such as lithium, rare-earth elements (REEs), cobalt, and aluminum, are non-renewable resources that are vital to modern technologies. For example, lithium is used in batteries for electronic devices and electric vehicles, and REEs are used in jet engines and anti-corrosion coatings for metals. Some critical elements, such as lithium and REEs, are not naturally abundant within the United States, and their supply and cost can be affected by shifting geopolitical factors. Understanding how critical elements can be separated and purified will advance the Nation's economy and security through advancements in mining and recycling of domestic critical elements. However, it is challenging to achieve the separation of critical metal elements with high purities by existing methods. Microporous titanosilicate materials contain unique structural features that are suitable for separating critical metal elements with high purities. Therefore, this research project will use a set of experimental and computational methods to design microporous titanosilicate materials for the highly selective separation of critical elements. The project also involves training students of various educational levels as well as outreach activities that disseminate the research findings to a broader audience from diverse backgrounds.The goal of this research project is to elucidate how the spatial arrangements of ion-adsorption sites in microporous titanosilicates facilitate high-resolution separation of metal ions with very similar properties by continuous ion exchange/continuous ion chromatography (CIX/CIC). Titanosilicates have long-range order ion-adsorption sites inside their micropores, where the micropores are channels with sizes similar to hydrated metal ions. Through material design, these ordered ion-adsorption sites could offer tunability toward metal ion selectivity. The investigators will use a set of experimental and computational methods for different length scales (ion adsorption site, unit cell, and particle scales) to design materials for the separation of REEs and other metal ions. The project will first focus on relating the fine structural features inside titanosilicate pores, such as charged site density and distribution, to REE ion adsorption and separation performance. Structures with different charged site densities will be synthesized and simulated. Ion adsorption equilibrium constants will be measured experimentally as well as computed using density functional theory calculations. Computational methods describing the hydration and dehydration of metal ions inside micropores will be developed. These efforts will lead to recommendations for structural features for separating REE cations. The project will then focus on evaluating the effects of material structure (chemical composition, pore size, and pore topology) on metal ion migration rates and activation energies. This outcome will be achieved by studying ion adsorption and migration on microporous materials of various structures (titanosilicates, clays, and zeolites) using experimental and computational methods. Finally, the project will focus on determining the effect of particle size and morphology on REE adsorption capacity, strength, and kinetics, which will be an important step in preparing these materials for practical applications. This project will provide guidelines for designing microporous materials for separating chemically similar metal ions (such as separating REEs from each other or separating lithium and sodium), which can also be customized based on the feedstock composition and impurities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂、稀土元素、钴和铝等关键金属元素是不可再生的资源,对现代技术至关重要。例如,锂用于电子设备和电动汽车的电池,稀土用于喷气发动机和金属的防腐蚀涂层。一些关键元素,如锂和稀土,在美国并不天然丰富,其供应和成本可能会受到地缘政治因素的影响。了解如何分离和纯化关键元素将通过国内关键元素的开采和回收来促进国家的经济和安全。然而,通过现有方法实现高纯度的关键金属元素的分离是具有挑战性的。微孔钛硅酸盐材料具有独特的结构特征,适用于分离高纯度的关键金属元素。因此,本研究计画将利用一套实验与计算方法,设计微孔钛矽酸盐材料,以高选择性地分离关键元素。本研究项目的目的是通过连续离子交换/连续离子色谱(CIX/CIC),阐明微孔钛硅酸盐中离子吸附位点的空间排列如何促进具有非常相似性质的金属离子的高分辨率分离。钛硅酸盐在其微孔内具有长程有序的离子吸附位点,其中微孔是具有与水合金属离子类似的尺寸的通道。通过材料设计,这些有序的离子吸附位点可以提供对金属离子选择性的可调节性。研究人员将使用一套针对不同长度尺度(离子吸附位点、晶胞和颗粒尺度)的实验和计算方法来设计分离稀土和其他金属离子的材料。该项目将首先关注钛硅酸盐孔隙内的精细结构特征,如带电位点密度和分布,与稀土离子吸附和分离性能的关系。将合成和模拟具有不同带电位点密度的结构。离子吸附平衡常数将通过实验测量以及使用密度泛函理论计算来计算。将开发描述微孔内金属离子水合和脱水的计算方法。这些努力将导致分离稀土阳离子的结构特征的建议。然后,该项目将重点评估材料结构(化学成分,孔径和孔隙拓扑结构)对金属离子迁移速率和活化能的影响。这一结果将通过研究离子吸附和迁移的微孔材料的各种结构(钛硅酸盐,粘土和沸石)使用实验和计算方法。最后,该项目将侧重于确定粒度和形态对稀土吸附能力,强度和动力学的影响,这将是制备这些材料用于实际应用的重要一步。该项目将为设计用于分离化学性质相似的金属离子(如分离稀土元素或分离锂和钠)的微孔材料提供指导,也可以根据原料成分和杂质进行定制。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Janik其他文献

Kriminalprävention
  • DOI:
    10.1007/s11757-012-0163-6
  • 发表时间:
    2012-03-22
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Wolfgang Bilsky;Anna K. Döring;Michael Janik;Denise Weßel-Therhorn;Klaus-Peter Dahle
  • 通讯作者:
    Klaus-Peter Dahle

Michael Janik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Janik', 18)}}的其他基金

Collaborative Research: The role of oxide overlayers on adsorbate migration and metal sintering in reactions of CO2
合作研究:氧化物覆盖层对 CO2 反应中吸附物迁移和金属烧结的作用
  • 批准号:
    2152412
  • 财政年份:
    2022
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Manipulation of Reaction Selectivity in the electrochemical environment for biomass-to-chemicals conversions
合作研究:SusChEM:生物质到化学品转化的电化学环境中反应选择性的操纵
  • 批准号:
    1665155
  • 财政年份:
    2017
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Continuing Grant
UNS:Collaborative Reasearch: Hydrocarbon conversion on oxysulfide surfaces: Towards the design of sulfur-tolerant reforming catalysts
UNS:合作研究:硫氧化物表面上的碳氢化合物转化:耐硫重整催化剂的设计
  • 批准号:
    1510541
  • 财政年份:
    2015
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
  • 批准号:
    1505607
  • 财政年份:
    2015
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
  • 批准号:
    1436206
  • 财政年份:
    2014
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale atomistic modeling tools for electrocatalytic systems
合作研究:电催化系统的多尺度原子建模工具
  • 批准号:
    1263951
  • 财政年份:
    2013
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
REU Site: Chemical Energy Storage and Conversion
REU 站点:化学能存储和转换
  • 批准号:
    1004826
  • 财政年份:
    2010
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant
The role of electrolyte/cathode interfacial structure on performance of proton exchange membrane fuel cells
电解质/阴极界面结构对质子交换膜燃料电池性能的影响
  • 批准号:
    0730502
  • 财政年份:
    2007
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Standard Grant

相似国自然基金

HNRNPK-Xist液液相分离促进X染色体失活
  • 批准号:
    32100547
  • 批准年份:
    2021
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Rbm14的相分离在胚胎发育中的功能及作用机理研究
  • 批准号:
    32000556
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
蛋白质液-液相变环境中DNA G-四链体结构的形成与功能研究
  • 批准号:
    32000866
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Hedgehog信号通路与应激颗粒的交互作用及其功能研究
  • 批准号:
    31970755
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
稀疏表示及其在盲源分离中的应用研究
  • 批准号:
    61104053
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
电磁作用下蛋白质分离行为的研究
  • 批准号:
    20976119
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
机械振动本底源信号半盲分离与重建方法的研究
  • 批准号:
    50675194
  • 批准年份:
    2006
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
有机介质中蛋白质电泳分离理论与实验研究
  • 批准号:
    20376055
  • 批准年份:
    2003
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidating the role of nonessential amino acid metabolism in diabetic skin wounds
阐明非必需氨基酸代谢在糖尿病皮肤伤口中的作用
  • 批准号:
    10607579
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
Integration of Immunologic Phenotyping with Computational Approaches to Predict Clinical Trajectory in Septic Patients
免疫表型分析与计算方法相结合来预测脓毒症患者的临床轨迹
  • 批准号:
    10708534
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
Blood DNA Methylation Biomarkers of Post AcuteSequelae of SARS CoV 2 Infection (PASC)
SARS CoV 2 感染后急性后遗症的血液 DNA 甲基化生物标志物 (PASC)
  • 批准号:
    10730452
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
Maternal gut microbiota in fetal programming of neurodevelopment and related disorders
母体肠道微生物群在胎儿神经发育和相关疾病编程中的作用
  • 批准号:
    10668634
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
Precise extraction and separation of critical metals based on the unique intermolecular interactions of hydrophobic deep eutectic solvents
基于疏水性低共熔溶剂独特的分子间相互作用,精确萃取和分离关键金属
  • 批准号:
    23K19186
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Functional Role for H3 Serotonylation During Critical Periods of Postnatal Brain Development and Plasticity
H3 血清素化在产后大脑发育和可塑性关键时期的功能作用
  • 批准号:
    10679672
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
Development of a Novel Peer-Narrated Virtual Patient Decision Aid for Entry into Alcohol Treatment for ICU Survivors with Alcohol Misuse
开发新型同伴叙述虚拟患者决策辅助工具,帮助 ICU 酗酒幸存者接受酒精治疗
  • 批准号:
    10679242
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
The role of maladaptive VEGFR2 signaling in renal stroma for chronic kidney disease
肾间质中适应不良的 VEGFR2 信号传导在慢性肾脏病中的作用
  • 批准号:
    10739504
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
Direct and Quantitative Probing of Desmosome Mechanotransduction
桥粒力转导的直接定量探测
  • 批准号:
    10713124
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
Identifying the pathways associated with bacterial antibiotic persistence within host tissues
确定与宿主组织内细菌抗生素持久性相关的途径
  • 批准号:
    10638788
  • 财政年份:
    2023
  • 资助金额:
    $ 34.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了