Collaborative Research: PPoSS: Planning: Principles for Edge Sensing and Computing for Personalized, Precision Healthcare at National Scale
合作研究:PPoSS:规划:全国范围内个性化精准医疗的边缘传感和计算原则
基本信息
- 批准号:2028888
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Personalized, precision healthcare (PPH) utilizing edge sensing-computing can collect, analyze and interpret continuous, multi-modality data, both physical and physiologic, producing information, knowledge and insight needed for real-time disease onset and progression monitoring at both the individual and population levels. This planning proposal will (i) identify the challenges and investigate the principles and potential solutions for the edge sensing-computing paradigm; (ii) engage diverse academic, community and government stakeholders to collectively define the functional and performance requirements for PPH; and (iii) create and validate preliminary approaches and devise a concrete, detailed plan for scaling PPH to national levels. It is well aligned with NSF’s mission to “advance the national health, prosperity and welfare.” This project can generate enormous social and economic benefits for communities, healthcare systems, and other stakeholders. If successful, the project will enable the monitoring of epidemics (e.g. disease outbreaks/spread, early detection/preemptive intervention of acute/infectious diseases) and the management of chronic physical and psychological conditions. The PIs will 1) disseminate publications, data and systems in academic, industry and community venues; 2) integrate CISE student education (including female and under-represented minorities) at different levels; 3) mentor high-school students on joint health-technology research; 4) cultivate a technology-literate healthcare workforce; and 5) pilot the technologies for immediate benefits to nearby communities while studying how to scale to other rural, suburban, and city settings.This project will explore, design, and evaluate potential solutions for enhancing the scalability of edge sensing-computing-based PPH in four dimensions of different types of sensing data, analytic algorithms, diseases, health conditions, and population sizes. The PIs will identify challenges and validate approaches guided by three principles: privacy as a first-class citizen, design for faults and exploitation of scale. The team will: 1) define new abstractions and quantifiable metrics for end-to-end security and privacy guarantees across hardware, software and application stack; 2) investigate systems for multi-temporal resolution processing of heterogeneous healthcare data, incorporating composition of components from possibly untrusted third parties and accommodate noises, disturbances or even adversary-controlled data; 3) explore novel AI/machine-learning algorithms suitable for PPH learning and inference, including AutoML for neural-network architecture search, model compression and federated learning at extreme scale while meeting security, privacy and robustness constraints; and 4) develop heterogeneous hardware accelerators and general design methodologies and tools for neural-hardware architecture co-design, efficient acceleration for time-series, point-cloud and language/sound understanding, and on-device edge training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用边缘传感计算的个性化精准医疗保健(PPH)可以收集,分析和解释连续的多模态数据,包括身体和生理数据,从而产生在个人和人群水平上实时监测疾病发作和进展所需的信息,知识和见解。该规划提案将(i)确定挑战并调查边缘传感计算范式的原则和潜在解决方案;(ii)吸引不同的学术,社区和政府利益相关者共同定义PPH的功能和性能要求;(iii)创建和验证初步方法,并制定将PPH扩展到国家层面的具体详细计划。这与NSF的使命“促进国家健康、繁荣和福利”是一致的。该项目可以为社区、医疗保健系统和其他利益相关者带来巨大的社会和经济效益。如果成功,该项目将能够监测流行病(例如疾病爆发/蔓延、急性/传染病的早期发现/预防性干预)和管理慢性生理和心理状况。PI将1)在学术,工业和社区场所传播出版物,数据和系统; 2)整合CISE学生教育(包括女性和代表性不足的少数民族); 3)指导高中学生进行联合卫生技术研究; 4)培养技术素养的医疗保健工作队伍; 5)试点技术,使附近社区立即受益,同时研究如何扩展到其他农村,郊区和城市环境。该项目将探索,设计,并在不同类型的传感数据、分析算法、疾病、健康状况和人口规模的四个维度上评估增强基于边缘传感计算的PPH可扩展性的潜在解决方案。PI将识别挑战并验证以三项原则为指导的方法:作为一等公民的隐私、针对错误的设计和规模利用。该小组将:1)为跨硬件、软件和应用堆栈的端到端安全性和隐私保证定义新的抽象和可量化的度量; 2)研究用于异构医疗保健数据的多时间分辨率处理的系统,包括来自可能不受信任的第三方的组件的组合,并适应噪声、干扰甚至是对手控制的数据; 3)探索适合PPH学习和推理的新型AI/机器学习算法,包括用于神经网络架构搜索的AutoML,模型压缩和极端规模的联邦学习,同时满足安全性,隐私性和鲁棒性约束;和4)开发异构硬件加速器以及用于神经硬件架构协同设计、时间序列、点云和语言/声音理解的高效加速的通用设计方法和工具,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Han其他文献
Preparation, Characterization of Phosphorus Doped Titania Photocatalysts with High Photocatalystic Properties
高光催化性能磷掺杂二氧化钛光催化剂的制备及表征
- DOI:
10.4028/www.scientific.net/amr.113-116.2154 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Siyao Guo;J. Sun;F. Wang;Lin Yang;Feng Zhang;Song Han - 通讯作者:
Song Han
Expansion strain model and damage risk control for cement-based materials with low water–binder ratios under rehydration
低水胶比水泥基材料复水膨胀应变模型及损伤风险控制
- DOI:
10.1016/j.conbuildmat.2021.122996 - 发表时间:
2021-06 - 期刊:
- 影响因子:7.4
- 作者:
Yazhou Liu;Mingzhe An;Ge Zhang;Ziruo Yu;Yue Wang;Song Han - 通讯作者:
Song Han
Study on NOxEmission Reduction in Coke Combustion and Sintering Process
焦炭燃烧及烧结过程NOx减排研究
- DOI:
10.3103/s1068364x19120093 - 发表时间:
2019 - 期刊:
- 影响因子:0.4
- 作者:
Song Han;Lin Dong;Zhiping Lei;Aiming Ke;Con Shi;Jing Chong Yan;Zhanku Li;Shigang Kang;Hengfu Shui;Zhicai Wang;Shibiao Ren;Chunxiu Pan - 通讯作者:
Chunxiu Pan
Improved predictive functional control for ethylene cracking furnace
乙烯裂解炉改进的预测功能控制
- DOI:
10.1177/0020294019842602 - 发表时间:
2019-04 - 期刊:
- 影响因子:2
- 作者:
Song Han;Su Cheng-li;Shi Hui-yuan;Li Ping;Cao Jiang-tao - 通讯作者:
Cao Jiang-tao
Hydroisomerization of n-hexane over gallium-promoted sulfated zirconia
镓促进的硫酸化氧化锆上正己烷的加氢异构化
- DOI:
10.1016/j.catcom.2003.08.003 - 发表时间:
2003 - 期刊:
- 影响因子:3.7
- 作者:
C. Cao;Song Han;Changlin Chen;N. Xu;Chunye Mou - 通讯作者:
Chunye Mou
Song Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Han', 18)}}的其他基金
Collaborative Research: SHF: Medium: Heterogeneous Architecture for Collaborative Machine Learning
协作研究:SHF:媒介:协作机器学习的异构架构
- 批准号:
2106711 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119340 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Planning: S3-IoT: Design and Deployment of Scalable, Secure, and Smart Mission-Critical IoT Systems
协作研究:PPoSS:规划:S3-IoT:可扩展、安全和智能的关键任务物联网系统的设计和部署
- 批准号:
2028875 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
RAPID: Preventing the Spread of Coronavirus with Efficient Deep Learning
RAPID:通过高效的深度学习防止冠状病毒的传播
- 批准号:
2027266 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CNS Core: Small: Dynamic and Composite Resource Management in Large-scale Industrial IoT Systems
CNS 核心:小型:大型工业物联网系统中的动态复合资源管理
- 批准号:
2008463 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms and Hardware for Accelerated Machine Learning
职业:用于加速机器学习的高效算法和硬件
- 批准号:
1943349 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
CPS: Small: Collaborative Research: A Secure Communication Framework with Verifiable Authenticity for Immutable Services in Industrial IoT Systems
CPS:小型:协作研究:工业物联网系统中不可变服务的具有可验证真实性的安全通信框架
- 批准号:
1932480 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
PFI-TT: Developing a Configurable Real-time High-speed Wireless Communication Platform for Large-scale Industrial Control Systems
PFI-TT:为大型工业控制系统开发可配置的实时高速无线通信平台
- 批准号:
1919229 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: A Software-defined Wireless Communications Network Research Infrastructure for the Industrial Internet of Things(IIoT)Research Community
CCRI:规划:协作研究:工业物联网(IIoT)研究社区的软件定义无线通信网络研究基础设施
- 批准号:
1925706 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316161 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316158 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316177 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
- 批准号:
2316235 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2406572 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
- 批准号:
2316159 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant














{{item.name}}会员




