Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care

合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施

基本信息

  • 批准号:
    2119340
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project investigates a completely new cross-disciplinary concept of “Computational Screening and Surveillance (CSS)” that utilizes edge learning to detect early indicators of diseases, and monitor health changes in both individuals and populations. CSS analyzes and interprets continuous and heterogeneous physical and physiologic sensing-data streams of human subjects to produce real-time information, knowledge, and insights about their health status. The project’s novelty is a data-driven paradigm that revolutionizes the understanding, prediction, intervention, treatment, and management of acute/infectious, chronic physical and psychological diseases. The project’s impacts are enormous social and economic benefits to individuals, organizations, and the healthcare system: early detection, preemptive intervention and management can lead to greatly improved quality of care, and huge savings for multiple diseases each costing hundreds of billions of dollars every year.The investigators design, develop and evaluate principles and solutions for CSS enabled by extreme-scale edge learning spanning four dimensions: data modalities, health conditions and data patterns, Artificial Intelligence/Machine Learning (AI/ML) algorithms and models, and individuals/populations. The design is guided by four principles: exploit scale and heterogeneity, design for uncertainty, privacy as a first-class citizen, and faults and attacks as a norm. The investigators will 1) design AI/ML algorithms for learning data patterns and correlations for diverse health conditions in both individuals and populations at extreme scales; 2) quantify theoretical bounds on the tradeoffs between security, privacy protection, and learning accuracy in order to protect against various attacks on data and models at both the edge and cloud; 3) develop programming abstractions for automated exploration of competing AI/ML methods under uncertainty, and system mechanisms to protect stream processing integrity against sensitive data disclosure and faulty/malicious analytics; and 4) devise neural architectures and accelerators for computation efficiency at the constrained edge, data efficiency using limited training sets, and human efficiency utilizing AutoML.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了一个全新的跨学科概念“计算筛查和监测(CSS)”,该概念利用边缘学习来检测疾病的早期指标,并监测个人和人群的健康变化。CSS分析和解释人类受试者的连续和异构的物理和生理传感数据流,以产生有关其健康状况的实时信息,知识和见解。该项目的新奇在于数据驱动的范式,它彻底改变了对急性/传染性、慢性生理和心理疾病的理解、预测、干预、治疗和管理。该项目的影响是巨大的社会和经济效益,为个人,组织和医疗保健系统:早期发现,先发制人的干预和管理可以大大提高护理质量,并节省大量的费用,每年花费数千亿美元的多种疾病。研究人员设计,开发和评估CSS的原则和解决方案,通过跨四个维度的极端规模边缘学习实现:数据模式、健康状况和数据模式、人工智能/机器学习(AI/ML)算法和模型以及个人/群体。该设计遵循四个原则:利用规模和异质性,设计不确定性,隐私作为一等公民,错误和攻击作为一种规范。研究人员将:1)设计AI/ML算法,用于在极端规模下学习个人和人群中各种健康状况的数据模式和相关性; 2)量化安全性、隐私保护和学习准确性之间权衡的理论界限,以防止对边缘和云的数据和模型的各种攻击; 3)开发编程抽象,用于在不确定性下自动探索竞争性AI/ML方法,以及保护流处理完整性免受敏感数据泄露和错误/恶意分析的系统机制;以及4)设计神经体系结构和加速器,用于约束边缘处的计算效率,使用有限训练集的数据效率,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Han其他文献

Wiring Bacterial Electron Flow for Sensitive Whole-Cell Amperometric Detection of Riboflavin
连接细菌电子流以进行核黄素的灵敏全细胞安培检测
  • DOI:
    10.1021/acs.analchem.6b03538
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Rong-Wei Si;Yuan Yang;Yang-Yang Yu;Song Han;Chun-Lian Zhang;De-Zhen Sun;Dan-Dan Zhai;Xiang Liu;Yang-Chun Yong
  • 通讯作者:
    Yang-Chun Yong
Pollutant template method synthesis of oxygen vacancy and template cavity riched TB-TiO2@MFA towards selective photodegradation of ciprofloxacin
污染物模板法合成氧空位和模板空腔富集的TB-TiO2@MFA选择性光降解环丙沙星
  • DOI:
    10.1016/j.apsusc.2021.151027
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ziyang Lu;Yangrui Xu;Yewei Ren;Guosheng Zhou;Huan Yan;Minshan Song;Panpan Wang;Changchang Ma;Song Han;Xinlin Liu
  • 通讯作者:
    Xinlin Liu
Throughput Maximization in Wireless Communication Systems Powered by Hybrid Energy Harvesting
混合能量收集驱动的无线通信系统吞吐量最大化
Hydroisomerization of n-hexane over gallium-promoted sulfated zirconia
镓促进的硫酸化氧化锆上正己烷的加氢异构化
  • DOI:
    10.1016/j.catcom.2003.08.003
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    C. Cao;Song Han;Changlin Chen;N. Xu;Chunye Mou
  • 通讯作者:
    Chunye Mou
Improved predictive functional control for ethylene cracking furnace
乙烯裂解炉改进的预测功能控制
  • DOI:
    10.1177/0020294019842602
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Song Han;Su Cheng-li;Shi Hui-yuan;Li Ping;Cao Jiang-tao
  • 通讯作者:
    Cao Jiang-tao

Song Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Song Han', 18)}}的其他基金

Collaborative Research: SHF: Medium: Heterogeneous Architecture for Collaborative Machine Learning
协作研究:SHF:媒介:协作机器学习的异构架构
  • 批准号:
    2106711
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Planning: S3-IoT: Design and Deployment of Scalable, Secure, and Smart Mission-Critical IoT Systems
协作研究:PPoSS:规划:S3-IoT:可扩展、安全和智能的关键任务物联网系统的设计和部署
  • 批准号:
    2028875
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Principles for Edge Sensing and Computing for Personalized, Precision Healthcare at National Scale
合作研究:PPoSS:规划:全国范围内个性化精准医疗的边缘传感和计算原则
  • 批准号:
    2028888
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
RAPID: Preventing the Spread of Coronavirus with Efficient Deep Learning
RAPID:通过高效的深度学习防止冠状病毒的传播
  • 批准号:
    2027266
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CNS Core: Small: Dynamic and Composite Resource Management in Large-scale Industrial IoT Systems
CNS 核心:小型:大型工业物联网系统中的动态复合资源管理
  • 批准号:
    2008463
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms and Hardware for Accelerated Machine Learning
职业:用于加速机器学习的高效算法和硬件
  • 批准号:
    1943349
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
CPS: Small: Collaborative Research: A Secure Communication Framework with Verifiable Authenticity for Immutable Services in Industrial IoT Systems
CPS:小型:协作研究:工业物联网系统中不可变服务的具有可验证真实性的安全通信框架
  • 批准号:
    1932480
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
PFI-TT: Developing a Configurable Real-time High-speed Wireless Communication Platform for Large-scale Industrial Control Systems
PFI-TT:为大型工业控制系统开发可配置的实时高速无线通信平台
  • 批准号:
    1919229
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: A Software-defined Wireless Communications Network Research Infrastructure for the Industrial Internet of Things(IIoT)Research Community
CCRI:规划:协作研究:工业物联网(IIoT)研究社区的软件定义无线通信网络研究基础设施
  • 批准号:
    1925706
  • 财政年份:
    2019
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了