Collaborative Research: SHF: Medium: Heterogeneous Architecture for Collaborative Machine Learning

协作研究:SHF:媒介:协作机器学习的异构架构

基本信息

  • 批准号:
    2106711
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The recent breakthrough of on-device machine learning with specialized artificial-intelligence hardware brings machine intelligence closer to individual devices. To leverage the power of the crowd, collaborative machine learning makes it possible to build up machine-learning models based on datasets that are distributed across multiple devices while preventing data leakage. However, most existing efforts are focused on homogeneous devices; given the widespread yet heterogeneous participants in practice, it is urgently important but challenging to manage immense heterogeneity. The research team develops heterogeneous architectures for collaborative machine learning to achieve three objectives under heterogeneity: efficiency, adaptivity, and privacy. The proposed heterogeneous architecture for collaborative machine learning is bringing tangible benefits for a wide range of disciplines that employ artificial intelligence technologies, such as healthcare, precision medicine, cyber physical systems, and education. The research findings of this project are intended to be integrated with the existing courses and K-12 programs. Furthermore, the research team is actively engaged in activities that encourage students from underrepresented groups to participate in computer science and engineering research.This project provides the theoretical underpinning and empirical evidence for an efficient, adaptive and privacy-preserving design under heterogeneity, which fills a critical void - the existing collaborative machine-learning approach fails to manage the immense heterogeneity in practice. This project centers on three aspects: (1) design of specialized neural architectures for heterogeneous hardware platforms to cope with the limited efficiency of collaborative training due to heterogeneity; (2) design of an efficient and adaptive knowledge-transfer framework to bridge heterogeneous participants based on their underlying proximity benefits; (3) privacy strategies for heterogeneous collaboration by identifying new vulnerabilities and developing privacy-preserving mechanisms. A general-purpose testbed is built to rigorously validate the proposed research and expand the impact of this project. It is expected that this project opens a new research paradigm to unleash the utmost potential of heterogeneous and collaborative machine intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近使用专门的人工智能硬件的机上机器学习的突破使机器智能更接近单个设备。为了利用人群的力量,协作机器学习使建立基于在多个设备上分布的数据集的同时防止数据泄漏的数据集建立机器学习模型。但是,大多数现有的努力都集中在均匀的设备上。鉴于实践中的广泛但异质的参与者,管理巨大的异质性迫切但又具有挑战性。研究团队开发了用于协作机器学习的异质体系结构,以在异质性下实现三个目标:效率,适应性和隐私。拟议的用于协作机器学习的异质体系结构为采用人工智能技术(例如医疗保健,精密医学,网络物理系统和教育)的广泛学科带来了切实的好处。该项目的研究结果旨在与现有课程和K-12计划集成。 Furthermore, the research team is actively engaged in activities that encourage students from underrepresented groups to participate in computer science and engineering research.This project provides the theoretical underpinning and empirical evidence for an efficient, adaptive and privacy-preserving design under heterogeneity, which fills a critical void - the existing collaborative machine-learning approach fails to manage the immense heterogeneity in practice.该项目以三个方面为基础:(1)设计用于异质性硬件平台的专门神经体系结构,以应对由于异质性而导致的协作培训效率有限; (2)设计有效和自适应的知识转移框架,以基于其基本接近益处桥接异质参与者; (3)通过识别新漏洞和开发隐私机制的方式来实现异质协作的隐私策略。构建了通用测试床,以严格验证拟议的研究并扩大该项目的影响。预计该项目可以打开一个新的研究范式,以释放异质和协作机器智能的最大潜力。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Han其他文献

Enhanced orientation photocatalytic ability of 1D inorganic imprinted oxygen vacancy CdO0.5S0.5 by confining the target to the specific reaction sites enriched in electrons
通过将目标限制在富含电子的特定反应位点,增强一维无机印迹氧空位 CdO0.5S0.5 的定向光催化能力
  • DOI:
    10.1016/j.jallcom.2022.163708
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Huan Yan;Yewei Ren;Guosheng Zhou;Panpan Wang;Yangrui Xu;Minshan Song;Xinlin Liu;Changchang Ma;Song Han;Ziyang Lu
  • 通讯作者:
    Ziyang Lu
Imprinted modified S-scheme heterojunction with high selectivity for inhibiting CdS photocorrosion by coating with poly-o-phenylenediamine
印迹修饰S型异质结通过聚邻苯二胺涂层高选择性抑制CdS光腐蚀
  • DOI:
    10.1016/j.apsusc.2022.154694
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Ziyang Lu;Huan Yan;Bing Li;Minshan Song;Ying Hang;Guosheng Zhou;Yangrui Xu;Changchang Ma;Song Han;Xinlin Liu
  • 通讯作者:
    Xinlin Liu
Communication-Optimal Distributed Dynamic Graph Clustering
通信最优的分布式动态图聚类
EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
EfficientViT-SAM:加速分段任何模型而不会造成性能损失
  • DOI:
    10.48550/arxiv.2402.05008
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuoyang Zhang;Han Cai;Song Han
  • 通讯作者:
    Song Han
Probabilistic Continuous Update Scheme in Location Dependent Continuous Queries
位置相关连续查询中的概率连续更新方案

Song Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Song Han', 18)}}的其他基金

Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2119340
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Planning: S3-IoT: Design and Deployment of Scalable, Secure, and Smart Mission-Critical IoT Systems
协作研究:PPoSS:规划:S3-IoT:可扩展、安全和智能的关键任务物联网系统的设计和部署
  • 批准号:
    2028875
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Principles for Edge Sensing and Computing for Personalized, Precision Healthcare at National Scale
合作研究:PPoSS:规划:全国范围内个性化精准医疗的边缘传感和计算原则
  • 批准号:
    2028888
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
RAPID: Preventing the Spread of Coronavirus with Efficient Deep Learning
RAPID:通过高效的深度学习防止冠状病毒的传播
  • 批准号:
    2027266
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CNS Core: Small: Dynamic and Composite Resource Management in Large-scale Industrial IoT Systems
CNS 核心:小型:大型工业物联网系统中的动态复合资源管理
  • 批准号:
    2008463
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms and Hardware for Accelerated Machine Learning
职业:用于加速机器学习的高效算法和硬件
  • 批准号:
    1943349
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CPS: Small: Collaborative Research: A Secure Communication Framework with Verifiable Authenticity for Immutable Services in Industrial IoT Systems
CPS:小型:协作研究:工业物联网系统中不可变服务的具有可验证真实性的安全通信框架
  • 批准号:
    1932480
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PFI-TT: Developing a Configurable Real-time High-speed Wireless Communication Platform for Large-scale Industrial Control Systems
PFI-TT:为大型工业控制系统开发可配置的实时高速无线通信平台
  • 批准号:
    1919229
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CCRI: Planning: Collaborative Research: A Software-defined Wireless Communications Network Research Infrastructure for the Industrial Internet of Things(IIoT)Research Community
CCRI:规划:协作研究:工业物联网(IIoT)研究社区的软件定义无线通信网络研究基础设施
  • 批准号:
    1925706
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了