Collaborative Research: SHF: Medium: Heterogeneous Architecture for Collaborative Machine Learning
协作研究:SHF:媒介:协作机器学习的异构架构
基本信息
- 批准号:2106711
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The recent breakthrough of on-device machine learning with specialized artificial-intelligence hardware brings machine intelligence closer to individual devices. To leverage the power of the crowd, collaborative machine learning makes it possible to build up machine-learning models based on datasets that are distributed across multiple devices while preventing data leakage. However, most existing efforts are focused on homogeneous devices; given the widespread yet heterogeneous participants in practice, it is urgently important but challenging to manage immense heterogeneity. The research team develops heterogeneous architectures for collaborative machine learning to achieve three objectives under heterogeneity: efficiency, adaptivity, and privacy. The proposed heterogeneous architecture for collaborative machine learning is bringing tangible benefits for a wide range of disciplines that employ artificial intelligence technologies, such as healthcare, precision medicine, cyber physical systems, and education. The research findings of this project are intended to be integrated with the existing courses and K-12 programs. Furthermore, the research team is actively engaged in activities that encourage students from underrepresented groups to participate in computer science and engineering research.This project provides the theoretical underpinning and empirical evidence for an efficient, adaptive and privacy-preserving design under heterogeneity, which fills a critical void - the existing collaborative machine-learning approach fails to manage the immense heterogeneity in practice. This project centers on three aspects: (1) design of specialized neural architectures for heterogeneous hardware platforms to cope with the limited efficiency of collaborative training due to heterogeneity; (2) design of an efficient and adaptive knowledge-transfer framework to bridge heterogeneous participants based on their underlying proximity benefits; (3) privacy strategies for heterogeneous collaboration by identifying new vulnerabilities and developing privacy-preserving mechanisms. A general-purpose testbed is built to rigorously validate the proposed research and expand the impact of this project. It is expected that this project opens a new research paradigm to unleash the utmost potential of heterogeneous and collaborative machine intelligence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近设备上机器学习的突破与专门的人工智能硬件使机器智能更接近单个设备。为了利用人群的力量,协作机器学习使得基于分布在多个设备上的数据集建立机器学习模型成为可能,同时防止数据泄漏。然而,大多数现有的努力都集中在同质设备上;鉴于实践中参与者的广泛而异质性,管理巨大的异质性是迫切重要但具有挑战性的。研究小组为协作机器学习开发了异构架构,以实现异构下的三个目标:效率、适应性和隐私。提出的协作机器学习的异构架构正在为采用人工智能技术的广泛学科带来切实的好处,例如医疗保健、精准医疗、网络物理系统和教育。本项目的研究成果旨在与现有课程和K-12课程相结合。此外,研究团队积极参与活动,鼓励来自代表性不足群体的学生参与计算机科学和工程研究。本项目为异构环境下高效、自适应和保护隐私的设计提供了理论基础和经验证据,填补了现有协作机器学习方法在实践中无法管理巨大异质性的关键空白。本课题主要研究三个方面的内容:(1)针对异构硬件平台设计专用的神经网络架构,解决异构导致协同训练效率受限的问题;(2)设计一个高效、适应性的知识转移框架,在异质性参与者之间架起一座桥梁;(3)通过识别新的漏洞和建立隐私保护机制来实现异构协作的隐私策略。建立了一个通用的测试平台,以严格验证所提出的研究并扩大该项目的影响。预计该项目将打开一个新的研究范式,以释放异构和协作机器智能的最大潜力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Han其他文献
Preparation, Characterization of Phosphorus Doped Titania Photocatalysts with High Photocatalystic Properties
高光催化性能磷掺杂二氧化钛光催化剂的制备及表征
- DOI:
10.4028/www.scientific.net/amr.113-116.2154 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Siyao Guo;J. Sun;F. Wang;Lin Yang;Feng Zhang;Song Han - 通讯作者:
Song Han
Expansion strain model and damage risk control for cement-based materials with low water–binder ratios under rehydration
低水胶比水泥基材料复水膨胀应变模型及损伤风险控制
- DOI:
10.1016/j.conbuildmat.2021.122996 - 发表时间:
2021-06 - 期刊:
- 影响因子:7.4
- 作者:
Yazhou Liu;Mingzhe An;Ge Zhang;Ziruo Yu;Yue Wang;Song Han - 通讯作者:
Song Han
Study on NOxEmission Reduction in Coke Combustion and Sintering Process
焦炭燃烧及烧结过程NOx减排研究
- DOI:
10.3103/s1068364x19120093 - 发表时间:
2019 - 期刊:
- 影响因子:0.4
- 作者:
Song Han;Lin Dong;Zhiping Lei;Aiming Ke;Con Shi;Jing Chong Yan;Zhanku Li;Shigang Kang;Hengfu Shui;Zhicai Wang;Shibiao Ren;Chunxiu Pan - 通讯作者:
Chunxiu Pan
Improved predictive functional control for ethylene cracking furnace
乙烯裂解炉改进的预测功能控制
- DOI:
10.1177/0020294019842602 - 发表时间:
2019-04 - 期刊:
- 影响因子:2
- 作者:
Song Han;Su Cheng-li;Shi Hui-yuan;Li Ping;Cao Jiang-tao - 通讯作者:
Cao Jiang-tao
Hydroisomerization of n-hexane over gallium-promoted sulfated zirconia
镓促进的硫酸化氧化锆上正己烷的加氢异构化
- DOI:
10.1016/j.catcom.2003.08.003 - 发表时间:
2003 - 期刊:
- 影响因子:3.7
- 作者:
C. Cao;Song Han;Changlin Chen;N. Xu;Chunye Mou - 通讯作者:
Chunye Mou
Song Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Han', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119340 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: Planning: S3-IoT: Design and Deployment of Scalable, Secure, and Smart Mission-Critical IoT Systems
协作研究:PPoSS:规划:S3-IoT:可扩展、安全和智能的关键任务物联网系统的设计和部署
- 批准号:
2028875 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Principles for Edge Sensing and Computing for Personalized, Precision Healthcare at National Scale
合作研究:PPoSS:规划:全国范围内个性化精准医疗的边缘传感和计算原则
- 批准号:
2028888 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
RAPID: Preventing the Spread of Coronavirus with Efficient Deep Learning
RAPID:通过高效的深度学习防止冠状病毒的传播
- 批准号:
2027266 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CNS Core: Small: Dynamic and Composite Resource Management in Large-scale Industrial IoT Systems
CNS 核心:小型:大型工业物联网系统中的动态复合资源管理
- 批准号:
2008463 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms and Hardware for Accelerated Machine Learning
职业:用于加速机器学习的高效算法和硬件
- 批准号:
1943349 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CPS: Small: Collaborative Research: A Secure Communication Framework with Verifiable Authenticity for Immutable Services in Industrial IoT Systems
CPS:小型:协作研究:工业物联网系统中不可变服务的具有可验证真实性的安全通信框架
- 批准号:
1932480 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
PFI-TT: Developing a Configurable Real-time High-speed Wireless Communication Platform for Large-scale Industrial Control Systems
PFI-TT:为大型工业控制系统开发可配置的实时高速无线通信平台
- 批准号:
1919229 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CCRI: Planning: Collaborative Research: A Software-defined Wireless Communications Network Research Infrastructure for the Industrial Internet of Things(IIoT)Research Community
CCRI:规划:协作研究:工业物联网(IIoT)研究社区的软件定义无线通信网络研究基础设施
- 批准号:
1925706 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant