Collaborative Research: PPoSS: Planning: Principles for Edge Sensing and Computing for Personalized, Precision Healthcare at National Scale

合作研究:PPoSS:规划:全国范围内个性化精准医疗的边缘传感和计算原则

基本信息

  • 批准号:
    2028952
  • 负责人:
  • 金额:
    $ 14.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Personalized, precision healthcare (PPH) utilizing edge sensing-computing can collect, analyze and interpret continuous, multi-modality data, both physical and physiologic, producing information, knowledge and insight needed for real-time disease onset and progression monitoring at both the individual and population levels. This planning proposal will (i) identify the challenges and investigate the principles and potential solutions for the edge sensing-computing paradigm; (ii) engage diverse academic, community and government stakeholders to collectively define the functional and performance requirements for PPH; and (iii) create and validate preliminary approaches and devise a concrete, detailed plan for scaling PPH to national levels. It is well aligned with NSF’s mission to “advance the national health, prosperity and welfare.” This project can generate enormous social and economic benefits for communities, healthcare systems, and other stakeholders. If successful, the project will enable the monitoring of epidemics (e.g. disease outbreaks/spread, early detection/preemptive intervention of acute/infectious diseases) and the management of chronic physical and psychological conditions. The PIs will 1) disseminate publications, data and systems in academic, industry and community venues; 2) integrate CISE student education (including female and under-represented minorities) at different levels; 3) mentor high-school students on joint health-technology research; 4) cultivate a technology-literate healthcare workforce; and 5) pilot the technologies for immediate benefits to nearby communities while studying how to scale to other rural, suburban, and city settings.This project will explore, design, and evaluate potential solutions for enhancing the scalability of edge sensing-computing-based PPH in four dimensions of different types of sensing data, analytic algorithms, diseases, health conditions, and population sizes. The PIs will identify challenges and validate approaches guided by three principles: privacy as a first-class citizen, design for faults and exploitation of scale. The team will: 1) define new abstractions and quantifiable metrics for end-to-end security and privacy guarantees across hardware, software and application stack; 2) investigate systems for multi-temporal resolution processing of heterogeneous healthcare data, incorporating composition of components from possibly untrusted third parties and accommodate noises, disturbances or even adversary-controlled data; 3) explore novel AI/machine-learning algorithms suitable for PPH learning and inference, including AutoML for neural-network architecture search, model compression and federated learning at extreme scale while meeting security, privacy and robustness constraints; and 4) develop heterogeneous hardware accelerators and general design methodologies and tools for neural-hardware architecture co-design, efficient acceleration for time-series, point-cloud and language/sound understanding, and on-device edge training.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用边缘传感计算的个性化、精准医疗(PPH)可以收集、分析和解释连续的、多模态的物理和生理数据,产生信息、知识和洞察力,以便在个人和群体层面实时监测疾病的发生和进展。该规划提案将(i)确定挑战,并研究边缘感知计算范式的原则和潜在解决方案;(ii)让不同的学术、社区和政府利益相关者共同确定PPH的功能和性能要求;(iii)创建和验证初步方法,并制定具体、详细的计划,将PPH推广到国家层面。这与美国国家科学基金会“促进国家健康、繁荣和福利”的使命完全一致。该项目可以为社区、医疗保健系统和其他利益相关者带来巨大的社会和经济效益。如果成功,该项目将能够监测流行病(例如疾病的爆发/传播、急性/传染病的早期发现/先发制人的干预)和管理慢性身体和心理状况。pi将1)在学术、工业和社区场所传播出版物、数据和系统;2)整合不同层次的CISE学生教育(包括女性和少数族裔);3)指导高中生进行联合卫生技术研究;4)培养一支具有技术素养的医疗保健队伍;5)在研究如何推广到其他农村、郊区和城市环境的同时,对这些技术进行试点,为附近社区带来直接利益。该项目将探索、设计和评估潜在的解决方案,以在不同类型的传感数据、分析算法、疾病、健康状况和人口规模的四个维度上增强基于边缘传感计算的PPH的可扩展性。pi将识别挑战并验证由三个原则指导的方法:作为一流公民的隐私、针对缺陷的设计和规模利用。该团队将:1)为跨硬件、软件和应用程序栈的端到端安全和隐私保证定义新的抽象和可量化指标;2)研究异构医疗数据的多时间分辨率处理系统,包括来自可能不受信任的第三方的组成部分,并适应噪声、干扰甚至对手控制的数据;3)探索适合PPH学习和推理的新型AI/机器学习算法,包括AutoML用于神经网络架构搜索、模型压缩和极端规模的联邦学习,同时满足安全性、隐私性和鲁棒性约束;4)开发异构硬件加速器和通用设计方法和工具,用于神经硬件架构协同设计,时间序列、点云和语言/声音理解的有效加速,以及设备上的边缘训练。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepVS: a deep learning approach for RF-based vital signs sensing
The Role of Unobtrusive Home-Based Continuous Sensing in the Management of Postacute Sequelae of SARS CoV-2.
  • DOI:
    10.2196/32713
  • 发表时间:
    2022-01-26
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Corman BHP;Rajupet S;Ye F;Schoenfeld ER
  • 通讯作者:
    Schoenfeld ER
Passive and Context-Aware In-Home Vital Signs Monitoring Using Co-Located UWB-Depth Sensor Fusion
  • DOI:
    10.1145/3549941
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zongxing Xie;Bing Zhou;Xi Cheng;E. Schoenfeld;Fan Ye
  • 通讯作者:
    Zongxing Xie;Bing Zhou;Xi Cheng;E. Schoenfeld;Fan Ye
VitalHub: Robust, Non-Touch Multi-User Vital Signs Monitoring using Depth Camera-Aided UWB
Signal quality detection towards practical non-touch vital sign monitoring
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Ye其他文献

MicroRNA-155-5p regulates the Th1/Th2 cytokines expression and the apoptosis of group 2 innate lymphiod cells via targeting TP53INP1 in allergic rhinitis
MicroRNA-155-5p通过靶向TP53INP1调节变应性鼻炎中Th1/Th2细胞因子的表达和第2组先天淋巴细胞的凋亡
  • DOI:
    10.1016/j.intimp.2021.108317
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yaqiong Zhu;Fan Ye;Yanpeng Fu;Xinhua Zhu;Yuehui Liu
  • 通讯作者:
    Yuehui Liu
Investigating the Effects of Underreporting of Crash Data on Three Commonly Used Traffic Crash Severity Models : Multinomial Logit , Ordered Probit and Mixed Logit Models
研究事故数据漏报对三种常用交通事故严重程度模型的影响:多项 Logit、有序 Probit 和混合 Logit 模型
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Ye
  • 通讯作者:
    Fan Ye
Low-Pollution and Controllable Selective-Area Deposition of a CdS Buffering Layer on CIGS Solar Cells by a Photochemical Technique
利用光化学技术在 CIGS 太阳能电池上低污染、可控选择性区域沉积 CdS 缓冲层
  • DOI:
    10.1021/acssuschemeng.7b01547
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Xiaojie Yuan;Xuhang Ma;Jun Liao;Fan Ye;Lexi Shao;Feng Peng;Jun Zhang
  • 通讯作者:
    Jun Zhang
Critical triple point as the origin of giant piezoelectricity in PbMg1/3Nb2/3O3-PbTiO3 system
PbMg1/3Nb2/3O3-PbTiO3 体系中临界三相点作为巨压电性的起源
  • DOI:
    10.1063/5.0021765
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Shailendra Rajput;Xiaoqin Ke;Xinghao Hu;Minxia Fang;Dingyue Hu;Fan Ye;Yanshuang Hao;Xiaobing Ren
  • 通讯作者:
    Xiaobing Ren
Syntheses and crystal structures of two copper complexes with pyridyl-substituted phenol ligand
两种吡啶基取代苯酚配体铜配合物的合成和晶体结构

Fan Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Ye', 18)}}的其他基金

Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2119299
  • 财政年份:
    2021
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
III: Small: Opportunistic Learning on Wheels: Peer-wise Training of Machine Learning Models among Connected Vehicles
III:小:轮子上的机会学习:联网车辆中机器学习模型的同行训练
  • 批准号:
    2007715
  • 财政年份:
    2020
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
SCC-IRG Track 1: Smart Aging: Connecting Communities Using Low-Cost and Secure Sensing Technologies
SCC-IRG 第 1 轨道:智能老龄化:使用低成本和安全的传感技术连接社区
  • 批准号:
    1951880
  • 财政年份:
    2020
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
CAREER: Software Hardware Architecture Co-Design for Smart Environment Operation and Management
职业:智能环境运营和管理的软硬件架构协同设计
  • 批准号:
    1652276
  • 财政年份:
    2017
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
SHF: Small: Designing Expandable and Cost-Effective Server-Centric Interconnects for Data Centers
SHF:小型:为数据中心设计可扩展且经济高效的以服务器为中心的互连
  • 批准号:
    1526162
  • 财政年份:
    2015
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: A Data-Centric Architecture for Pervasive Edge Computing in Heterogeneous Extensible Distributed Systems
CSR:媒介:协作研究:异构可扩展分布式系统中普遍边缘计算的以数据为中心的架构
  • 批准号:
    1513719
  • 财政年份:
    2015
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
SHF: Small: Towards Cost-Efficient Guaranteed Performance Multicast in Fat-Tree Data Center Networks
SHF:小型:在 Fat-Tree 数据中心网络中实现经济高效的性能保证组播
  • 批准号:
    1320044
  • 财政年份:
    2013
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 14.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了