Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care

合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施

基本信息

  • 批准号:
    2119299
  • 负责人:
  • 金额:
    $ 212.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project investigates a completely new cross-disciplinary concept of “Computational Screening and Surveillance (CSS)” that utilizes edge learning to detect early indicators of diseases, and monitor health changes in both individuals and populations. CSS analyzes and interprets continuous and heterogeneous physical and physiologic sensing-data streams of human subjects to produce real-time information, knowledge, and insights about their health status. The project’s novelty is a data-driven paradigm that revolutionizes the understanding, prediction, intervention, treatment, and management of acute/infectious, chronic physical and psychological diseases. The project’s impacts are enormous social and economic benefits to individuals, organizations, and the healthcare system: early detection, preemptive intervention and management can lead to greatly improved quality of care, and huge savings for multiple diseases each costing hundreds of billions of dollars every year.The investigators design, develop and evaluate principles and solutions for CSS enabled by extreme-scale edge learning spanning four dimensions: data modalities, health conditions and data patterns, Artificial Intelligence/Machine Learning (AI/ML) algorithms and models, and individuals/populations. The design is guided by four principles: exploit scale and heterogeneity, design for uncertainty, privacy as a first-class citizen, and faults and attacks as a norm. The investigators will 1) design AI/ML algorithms for learning data patterns and correlations for diverse health conditions in both individuals and populations at extreme scales; 2) quantify theoretical bounds on the tradeoffs between security, privacy protection, and learning accuracy in order to protect against various attacks on data and models at both the edge and cloud; 3) develop programming abstractions for automated exploration of competing AI/ML methods under uncertainty, and system mechanisms to protect stream processing integrity against sensitive data disclosure and faulty/malicious analytics; and 4) devise neural architectures and accelerators for computation efficiency at the constrained edge, data efficiency using limited training sets, and human efficiency utilizing AutoML.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了一种全新的跨学科概念“计算筛查和监测”,它利用边缘学习来检测疾病的早期指标,并监测个人和人群的健康变化。CS分析和解释人类受试者的连续和不同种类的生理和生理传感数据流,以产生关于他们健康状况的实时信息、知识和洞察。该项目的新颖性是一种数据驱动的范式,它彻底改变了对急性/传染性、慢性身体和心理疾病的理解、预测、干预、治疗和管理。该项目的影响为个人、组织和医疗保健系统带来了巨大的社会和经济利益:早期发现、先发制人的干预和管理可以极大地提高医疗质量,并为多种疾病节省巨额成本,每种疾病每年花费数千亿美元。研究人员设计、开发和评估由极大规模边缘学习支持的CS的原则和解决方案,涉及四个维度:数据模式、健康状况和数据模式、人工智能/机器学习(AI/ML)算法和模型以及个人/人口。设计遵循四个原则:利用规模和异质性,针对不确定性进行设计,将隐私作为一等公民,将错误和攻击作为规范。调查人员将1)设计AI/ML算法,用于在极端规模上学习数据模式以及个人和群体中不同健康状况的相关性;2)量化安全性、隐私保护和学习准确性之间的理论界限,以防止对边缘和云中的数据和模型的各种攻击;3)开发编程抽象,用于在不确定情况下自动探索竞争的AI/ML方法,以及保护流处理完整性免受敏感数据泄露和错误/恶意分析的系统机制;以及4)设计神经架构和加速器,以提高受约束边缘的计算效率,使用有限的训练集提高数据效率,并利用AutoML提高人类效率。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Demo: Fusing UWB and Depth Sensors for Passive and Context-Aware Vital Signs Monitoring
演示:融合 UWB 和深度传感器进行被动和上下文感知生命体征监测
Poster: Towards Robust, Extensible, and Scalable Home Sensing Data Collection
海报:实现稳健、可扩展和可扩展的家庭传感数据收集
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elbadry, Mohammed;Liu, Mengjing;Hua, Yindong;Xie, Zongxing;Ye, Fan
  • 通讯作者:
    Ye, Fan
DeepVS: a deep learning approach for RF-based vital signs sensing
RF-Q: Unsupervised Signal Quality Assessment for Robust RF-based Respiration Monitoring
Poster: Quantifying Signal Quality Using Autoencoder for Robust RF-based Respiration Monitoring
海报:使用自动编码器量化信号质量以实现稳健的基于射频的呼吸监测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fan Ye其他文献

MicroRNA-155-5p regulates the Th1/Th2 cytokines expression and the apoptosis of group 2 innate lymphiod cells via targeting TP53INP1 in allergic rhinitis
MicroRNA-155-5p通过靶向TP53INP1调节变应性鼻炎中Th1/Th2细胞因子的表达和第2组先天淋巴细胞的凋亡
  • DOI:
    10.1016/j.intimp.2021.108317
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Yaqiong Zhu;Fan Ye;Yanpeng Fu;Xinhua Zhu;Yuehui Liu
  • 通讯作者:
    Yuehui Liu
Investigating the Effects of Underreporting of Crash Data on Three Commonly Used Traffic Crash Severity Models : Multinomial Logit , Ordered Probit and Mixed Logit Models
研究事故数据漏报对三种常用交通事故严重程度模型的影响:多项 Logit、有序 Probit 和混合 Logit 模型
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan Ye
  • 通讯作者:
    Fan Ye
Low-Pollution and Controllable Selective-Area Deposition of a CdS Buffering Layer on CIGS Solar Cells by a Photochemical Technique
利用光化学技术在 CIGS 太阳能电池上低污染、可控选择性区域沉积 CdS 缓冲层
  • DOI:
    10.1021/acssuschemeng.7b01547
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Xiaojie Yuan;Xuhang Ma;Jun Liao;Fan Ye;Lexi Shao;Feng Peng;Jun Zhang
  • 通讯作者:
    Jun Zhang
Critical triple point as the origin of giant piezoelectricity in PbMg1/3Nb2/3O3-PbTiO3 system
PbMg1/3Nb2/3O3-PbTiO3 体系中临界三相点作为巨压电性的起源
  • DOI:
    10.1063/5.0021765
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Shailendra Rajput;Xiaoqin Ke;Xinghao Hu;Minxia Fang;Dingyue Hu;Fan Ye;Yanshuang Hao;Xiaobing Ren
  • 通讯作者:
    Xiaobing Ren
Syntheses and crystal structures of two copper complexes with pyridyl-substituted phenol ligand
两种吡啶基取代苯酚配体铜配合物的合成和晶体结构

Fan Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fan Ye', 18)}}的其他基金

III: Small: Opportunistic Learning on Wheels: Peer-wise Training of Machine Learning Models among Connected Vehicles
III:小:轮子上的机会学习:联网车辆中机器学习模型的同行训练
  • 批准号:
    2007715
  • 财政年份:
    2020
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Standard Grant
SCC-IRG Track 1: Smart Aging: Connecting Communities Using Low-Cost and Secure Sensing Technologies
SCC-IRG 第 1 轨道:智能老龄化:使用低成本和安全的传感技术连接社区
  • 批准号:
    1951880
  • 财政年份:
    2020
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Principles for Edge Sensing and Computing for Personalized, Precision Healthcare at National Scale
合作研究:PPoSS:规划:全国范围内个性化精准医疗的边缘传感和计算原则
  • 批准号:
    2028952
  • 财政年份:
    2020
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Standard Grant
CAREER: Software Hardware Architecture Co-Design for Smart Environment Operation and Management
职业:智能环境运营和管理的软硬件架构协同设计
  • 批准号:
    1652276
  • 财政年份:
    2017
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
SHF: Small: Designing Expandable and Cost-Effective Server-Centric Interconnects for Data Centers
SHF:小型:为数据中心设计可扩展且经济高效的以服务器为中心的互连
  • 批准号:
    1526162
  • 财政年份:
    2015
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: A Data-Centric Architecture for Pervasive Edge Computing in Heterogeneous Extensible Distributed Systems
CSR:媒介:协作研究:异构可扩展分布式系统中普遍边缘计算的以数据为中心的架构
  • 批准号:
    1513719
  • 财政年份:
    2015
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
SHF: Small: Towards Cost-Efficient Guaranteed Performance Multicast in Fat-Tree Data Center Networks
SHF:小型:在 Fat-Tree 数据中心网络中实现经济高效的性能保证组播
  • 批准号:
    1320044
  • 财政年份:
    2013
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316161
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316176
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316158
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
  • 批准号:
    2316177
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: General-Purpose Scalable Technologies for Fundamental Graph Problems
合作研究:PPoSS:大型:解决基本图问题的通用可扩展技术
  • 批准号:
    2316235
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
  • 批准号:
    2406572
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: Large: A Full-stack Approach to Declarative Analytics at Scale
协作研究:PPoSS:大型:大规模声明性分析的全栈方法
  • 批准号:
    2316159
  • 财政年份:
    2023
  • 资助金额:
    $ 212.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了