SHF: Small: Towards Cost-Efficient Guaranteed Performance Multicast in Fat-Tree Data Center Networks
SHF:小型:在 Fat-Tree 数据中心网络中实现经济高效的性能保证组播
基本信息
- 批准号:1320044
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Massive modern data centers consisting of tens of thousands of servers, such as Microsoft's Azure platform, Google's App engine, and Amazon's EC2 platform, have emerged to form the backbone of a variety of powerful distributed computing frameworks. Meanwhile, many companies are moving their services such as e-commerce, scientific computing and social networking to the cloud, due to its ability to offer scalable and elastic computing and storage services. In such large-scale distributed computing frameworks, efficient communication is often required among huge datasets stored in tens of thousands of servers across a data center. The data center network (DCN) that connects different servers would become the bottleneck of the system, and its performance is essential to the successful operation of a data center. On the other hand, many online applications and back-end infrastructural computations hosted by data centers require one-to-many or multicast communication from a server to a group of servers. This research aims to investigate the fundamental and challenging issues faced in building cost-efficient multicast data center networks with guaranteed performance. As cloud computing is penetrating into all aspects of society, this research will have a profound impact on society and help change the world. The objective of this research is to design cost-efficient multicast fat-tree data center networks (DCNs) with guaranteed performance through exploring some unique novel features and techniques in data centers. The project combines theoretical analysis, algorithm design, network optimization, simulation, and prototyping techniques to provide a comprehensive working solution that enables high performance multicast in fat-tree DCNs. More specifically, the research focuses on following closely coupled issues: (1) cost-efficient provisioning of fat-tree DCNs to deploy guaranteed-bandwidth multicast by exploring server redundancy and link oversubscription in data centers; (2) leveraging the OpenFlow framework to develop practical multicast scheduling algorithms that ensure traffic load balance and efficient network utilization under volatile data center traffic; (3) employing virtual machine technology to offer multicast with differentiated bandwidth guarantees tailored to application-specific demand; (4) conducting a comprehensive performance evaluation through extensive simulations and implementation of proposed schemes in a network prototype. This research hopes to impact fundamental design principles of high performance multicast fat-tree DCNs. The outcome of this research has the potential to boost the performance of cloud computing applications currently hosted in data centers, and to facilitate cloud adoption for future applications that rely on group communication and demand predictable high bandwidth. A project goal is to train graduate students and promote the participation of female engineering students. The important findings of this project are to be disseminated to the research community by way of conferences, journals and web site access.
由数以万计的服务器组成的海量现代数据中心,如微软的Azure平台、谷歌的App Engine和亚马逊的EC2平台,已经出现,形成了各种强大的分布式计算框架的骨干。与此同时,许多公司正在将电子商务、科学计算和社交网络等服务转移到云上,因为它能够提供可扩展和弹性的计算和存储服务。在这种大规模的分布式计算框架中,往往需要在存储在一个数据中心的数万台服务器上的海量数据集之间进行高效的通信。连接不同服务器的数据中心网络(DCN)将成为系统的瓶颈,其性能对数据中心的成功运营至关重要。另一方面,数据中心托管的许多在线应用和后端基础设施计算需要从一个服务器到一组服务器的一对多或多播通信。本研究旨在研究在构建具有成本效益和性能保证的组播数据中心网络时所面临的基本和具有挑战性的问题。随着云计算正在渗透到社会的方方面面,这项研究将对社会产生深刻的影响,并帮助改变世界。本研究的目的是通过探索数据中心中一些独特的新特性和技术来设计具有成本效益和性能保证的组播胖树数据中心网络(DCNS)。该项目结合了理论分析、算法设计、网络优化、仿真和原型技术,提供了一个全面的工作解决方案,能够在胖树DCNS中实现高性能的组播。更具体地说,研究重点集中在以下紧密耦合的问题上:(1)通过探索数据中心的服务器冗余和链路超额订阅,以成本效率的方式提供胖树DCN来部署有保证的带宽组播;(2)利用OpenFlow框架开发实用的组播调度算法,以确保数据中心流量的负载平衡和网络的高效利用;(3)利用虚拟机技术提供针对特定应用需求的具有区分带宽保证的组播;(4)通过在网络原型中广泛的模拟和实施所提出的方案,对所提出的方案进行全面的性能评估。本研究希望对高性能组播胖树DCNS的基本设计原则产生一定的影响。这项研究的结果有可能提升目前托管在数据中心的云计算应用的性能,并促进未来依赖组通信和需求可预测高带宽的应用采用云。一个项目的目标是培养研究生,并促进女性工科学生的参与。该项目的重要成果将通过会议、期刊和网站访问的方式向研究界传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fan Ye其他文献
MicroRNA-155-5p regulates the Th1/Th2 cytokines expression and the apoptosis of group 2 innate lymphiod cells via targeting TP53INP1 in allergic rhinitis
MicroRNA-155-5p通过靶向TP53INP1调节变应性鼻炎中Th1/Th2细胞因子的表达和第2组先天淋巴细胞的凋亡
- DOI:
10.1016/j.intimp.2021.108317 - 发表时间:
2021 - 期刊:
- 影响因子:5.6
- 作者:
Yaqiong Zhu;Fan Ye;Yanpeng Fu;Xinhua Zhu;Yuehui Liu - 通讯作者:
Yuehui Liu
Investigating the Effects of Underreporting of Crash Data on Three Commonly Used Traffic Crash Severity Models : Multinomial Logit , Ordered Probit and Mixed Logit Models
研究事故数据漏报对三种常用交通事故严重程度模型的影响:多项 Logit、有序 Probit 和混合 Logit 模型
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Fan Ye - 通讯作者:
Fan Ye
Low-Pollution and Controllable Selective-Area Deposition of a CdS Buffering Layer on CIGS Solar Cells by a Photochemical Technique
利用光化学技术在 CIGS 太阳能电池上低污染、可控选择性区域沉积 CdS 缓冲层
- DOI:
10.1021/acssuschemeng.7b01547 - 发表时间:
2017-07 - 期刊:
- 影响因子:8.4
- 作者:
Xiaojie Yuan;Xuhang Ma;Jun Liao;Fan Ye;Lexi Shao;Feng Peng;Jun Zhang - 通讯作者:
Jun Zhang
Critical triple point as the origin of giant piezoelectricity in PbMg1/3Nb2/3O3-PbTiO3 system
PbMg1/3Nb2/3O3-PbTiO3 体系中临界三相点作为巨压电性的起源
- DOI:
10.1063/5.0021765 - 发表时间:
2020-09 - 期刊:
- 影响因子:3.2
- 作者:
Shailendra Rajput;Xiaoqin Ke;Xinghao Hu;Minxia Fang;Dingyue Hu;Fan Ye;Yanshuang Hao;Xiaobing Ren - 通讯作者:
Xiaobing Ren
Syntheses and crystal structures of two copper complexes with pyridyl-substituted phenol ligand
两种吡啶基取代苯酚配体铜配合物的合成和晶体结构
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.7
- 作者:
Fan Ye;Xuan Shen;Yan Xu;Dun-Ru Zhu - 通讯作者:
Dun-Ru Zhu
Fan Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fan Ye', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Principles and Infrastructure of Extreme Scale Edge Learning for Computational Screening and Surveillance for Health Care
合作研究:PPoSS:大型:用于医疗保健计算筛查和监视的超大规模边缘学习的原理和基础设施
- 批准号:
2119299 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
III: Small: Opportunistic Learning on Wheels: Peer-wise Training of Machine Learning Models among Connected Vehicles
III:小:轮子上的机会学习:联网车辆中机器学习模型的同行训练
- 批准号:
2007715 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SCC-IRG Track 1: Smart Aging: Connecting Communities Using Low-Cost and Secure Sensing Technologies
SCC-IRG 第 1 轨道:智能老龄化:使用低成本和安全的传感技术连接社区
- 批准号:
1951880 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Principles for Edge Sensing and Computing for Personalized, Precision Healthcare at National Scale
合作研究:PPoSS:规划:全国范围内个性化精准医疗的边缘传感和计算原则
- 批准号:
2028952 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CAREER: Software Hardware Architecture Co-Design for Smart Environment Operation and Management
职业:智能环境运营和管理的软硬件架构协同设计
- 批准号:
1652276 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SHF: Small: Designing Expandable and Cost-Effective Server-Centric Interconnects for Data Centers
SHF:小型:为数据中心设计可扩展且经济高效的以服务器为中心的互连
- 批准号:
1526162 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: A Data-Centric Architecture for Pervasive Edge Computing in Heterogeneous Extensible Distributed Systems
CSR:媒介:协作研究:异构可扩展分布式系统中普遍边缘计算的以数据为中心的架构
- 批准号:
1513719 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
- 批准号:
2244479 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2301940 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing
协作研究:SHF:小型:迈向可变性感知软件分析和测试
- 批准号:
2211589 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing
协作研究:SHF:小型:迈向可变性感知软件分析和测试
- 批准号:
2211588 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Towards High Performance Serverless Edge Computing for Data-intensive Applications
SHF:小型:面向数据密集型应用程序的高性能无服务器边缘计算
- 批准号:
2230620 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114514 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Towards High-Performance Machine Learning on Graphs
SHF:小型:迈向图上的高性能机器学习
- 批准号:
2127207 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114519 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
- 批准号:
2114526 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Towards a Holistic Causal Model for Continuous Software Traceability
SHF:小型:迈向连续软件可追溯性的整体因果模型
- 批准号:
2007246 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant