RAPID: Automated Extraction and Validation of the Gist of Social Media Messages about COVID-19
RAPID:自动提取和验证有关 COVID-19 的社交媒体消息要点
基本信息
- 批准号:2029420
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While the novel coronavirus sweeps the globe, democratic societies face a quandary, namely, how to encourage sacrifices to reduce risk, even when the threat is invisible and seems to be receding. When risk is high, individuals may need to engage in extreme forms of social distancing for long periods, but this choice comes with economic and personal costs. Not engaging in these risk-reduction activities, however, could cause millions of deaths. It is therefore crucial for public health communicators to understand rationales for refusing these actions and to base risk communication on empirically supported principles, including the need to convey the gist (bottom-line meaning) of these actions to individuals making these challenging choices.This project consists of three studies, each with two samples at different time points, with the ultimate goal in subsequent studies of converting the gists of social media messages into effective risk-communication interventions. The approach is motivated by Fuzzy Trace Theory–an evidence-based account of health decision making under risk–which posits that decisions are based on qualitative gist representations of stimuli that encode basic meaning in context. The scholars test time-sensitive hypotheses using bottom-up unsupervised machine-learning algorithms to characterize the topics in social media messages about COVID-19 and top-down human judgments about theoretically predictable mental representations of the gist of perceived risks and benefits of risk-reduction behaviors. Study 1 quantifies the prevalence of gists pertaining to social distancing and other risk-reduction behaviors (e.g., hand washing) by extracting millions of social media messages from Twitter and public Facebook posts. This involves automatic coding an ongoing corpus of millions of social media messages using probabilistic topic models. Study 2 provides a systematic approach with human judges to interpreting the topics extracted by a topic model at different time points. Study 3 involves a different group of human judges assessing topics for their consistency with a targeted set of gist representations of risks and benefits, along with gist principles that express values. The researchers adapt items used successfully in prior research. Similar gist representations have predicted self-reported risk-reduction behaviors for numerous health conditions. Thus, for Study 3, the researchers validate topic gists by fielding a theoretically motivated survey analyzed for reliability and construct validity. The focus is on perceptions of the gist of risks and benefits, especially gists that can promote the health of individuals and society. Overall, this project introduces novel techniques for eliciting gists from social media that can be used to generate meaningful public health communications. The project directly informs existing attempts by public health communicators to express the risks, benefits, and actions that members of the population should take to mitigate the spread of the COVID-19 pandemic. The measures are validated against human users, enabling the team to achieve both accuracy and scale. This project serves as the basis for a larger effort that can increase the extent to which gist elicitation may be automated, helping public health communicators to quickly understand which gists should be communicated to which communities during outbreaks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当新型冠状病毒席卷全球时,民主社会面临着一个进退两难的境地,即如何鼓励牺牲以降低风险,即使威胁是看不见的,似乎正在消退。当风险很高时,个人可能需要长时间从事极端形式的社交疏远,但这种选择伴随着经济和个人成本。然而,如果不参与这些降低风险的活动,可能会导致数百万人死亡。因此,对于公共卫生传播者来说,理解拒绝这些行动的理由并将风险沟通建立在经验支持的原则上是至关重要的,包括需要向做出这些具有挑战性的选择的个人传达这些行动的要点(底线意义)。该项目由三项研究组成,每项研究在不同的时间点都有两个样本,最终目标是在后续研究中将社交媒体信息的要点转化为有效的风险沟通干预措施。这种方法是由模糊痕迹理论推动的--一种基于证据的风险下健康决策的描述--该理论认为,决策是基于对刺激的定性主旨表示,这些刺激在上下文中编码基本含义。学者们使用自下而上的无监督机器学习算法来测试时间敏感型假设,以表征有关新冠肺炎的社交媒体消息中的主题,以及自上而下的人类对感知到的风险和降低风险行为的好处的心理表征在理论上可以预测的判断。研究1通过从Twitter和Facebook公开帖子中提取数百万条社交媒体消息,量化了与社交距离和其他降低风险行为(例如洗手)有关的咨询师的流行率。这涉及到使用概率主题模型对数百万条社交媒体消息的持续语料库进行自动编码。研究2提供了一种系统的方法,由人类法官来解释主题模型在不同时间点提取的主题。研究3涉及一组不同的人类评委,他们评估主题与一组有针对性的风险和利益的主要表现,以及表达价值观的基本原则的一致性。研究人员对先前研究中成功使用的项目进行了调整。类似的要点陈述预测了许多健康状况的自我报告的降低风险行为。因此,在研究3中,研究人员通过对信度和结构效度进行分析的理论动机的调查来验证话题引导者。重点是对风险和收益的主旨的看法,特别是能够促进个人和社会健康的科学家。总体而言,该项目引入了从社交媒体中引出专家的新技术,这些技术可用于产生有意义的公共卫生传播。该项目直接告知公共卫生传播者现有的尝试,以表达人口成员为减轻新冠肺炎大流行的传播而应采取的风险、好处和行动。这些措施针对人类用户进行了验证,使团队能够同时实现准确性和规模。该项目是一个更大的努力的基础,该努力可以增加GIST启发的自动化程度,帮助公共卫生传播者快速了解在疫情爆发期间应该将哪些指导者传达给哪些社区。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Models of risky choice across ages, frames, and individuals: The fuzzy frontier.
跨年龄、框架和个人的风险选择模型:模糊边界。
- DOI:10.1037/dec0000209
- 发表时间:2023
- 期刊:
- 影响因子:1.5
- 作者:Reyna, Valerie F.
- 通讯作者:Reyna, Valerie F.
Of Viruses, Vaccines, and Variability: Qualitative Meaning Matters
病毒、疫苗和变异性:定性意义很重要
- DOI:10.1016/j.tics.2020.05.015
- 发表时间:2020
- 期刊:
- 影响因子:19.9
- 作者:Reyna, Valerie F.
- 通讯作者:Reyna, Valerie F.
Abstraction: An alternative neurocognitive account of recognition, prediction, and decision making
摘要:识别、预测和决策的另一种神经认知解释
- DOI:10.1017/s0140525x19003017
- 发表时间:2020
- 期刊:
- 影响因子:29.3
- 作者:Reyna, Valerie F.;Broniatowski, David A.
- 通讯作者:Broniatowski, David A.
A scientific theory of gist communication and misinformation resistance, with implications for health, education, and policy
- DOI:10.1073/pnas.1912441117
- 发表时间:2021-04-13
- 期刊:
- 影响因子:11.1
- 作者:Reyna, Valerie F.
- 通讯作者:Reyna, Valerie F.
What social sciences tell us about COVID-19’s true toll—and how they can help plan for the future
社会科学告诉我们有关 COVID-19 的真实死亡人数以及它们如何帮助我们规划未来
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Kellogg, E.;Reyna, V. F.
- 通讯作者:Reyna, V. F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerie Reyna其他文献
Leveraging Prompt-Based Large Language Models: Predicting Pandemic Health Decisions and Outcomes Through Social Media Language
利用基于提示的大型语言模型:通过社交媒体语言预测流行病健康决策和结果
- DOI:
10.1145/3613904.3642117 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xi Ding;Buse Çarik;U. Gunturi;Valerie Reyna;Eugenia H. Rho - 通讯作者:
Eugenia H. Rho
Clarifying values: an updated review
- DOI:
10.1186/1472-6947-13-s2-s8 - 发表时间:
2013-11-29 - 期刊:
- 影响因子:3.800
- 作者:
Angela Fagerlin;Michael Pignone;Purva Abhyankar;Nananda Col;Deb Feldman-Stewart;Teresa Gavaruzzi;Jennifer Kryworuchko;Carrie A Levin;Arwen H Pieterse;Valerie Reyna;Anne Stiggelbout;Laura D Scherer;Celia Wills;Holly O Witteman - 通讯作者:
Holly O Witteman
Valerie Reyna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerie Reyna', 18)}}的其他基金
Development of Higher Order Cognitive Processes in Adolescence and Young Adulthood: Social, Behavioral, and Biological Influences on Learning
青春期和青年期高阶认知过程的发展:社会、行为和生物对学习的影响
- 批准号:
0840111 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Processes That Control Children's False-Memory Reports: Recollection, Rejection, and Phantom Recollection
控制儿童错误记忆报告的过程:回忆、拒绝和幻象回忆
- 批准号:
0553225 - 财政年份:2005
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Processes That Control Children's False-Memory Reports: Recollection, Rejection, and Phantom Recollection
控制儿童错误记忆报告的过程:回忆、拒绝和幻象回忆
- 批准号:
0230205 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Processes That Control Children's False-Memory Reports: Recollection, Rejection, and Phantom Recollection
控制儿童错误记忆报告的过程:回忆、拒绝和幻象回忆
- 批准号:
0417960 - 财政年份:2003
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
Automated semantic scene content extraction for Security, Safety, Construction and Maintenance
用于安保、安全、施工和维护的自动语义场景内容提取
- 批准号:
10063636 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
Automated Nucleic Acid Extraction and Purification System to Build Vet-LIRN Testing Capacity
自动化核酸提取和纯化系统,构建 Vet-LIRN 检测能力
- 批准号:
10820696 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
EAGER: SSMCDAT2023: Natural Language Processing and Large Language Models for Automated Extraction of Materials Chemistry Data from Scientific Literature
EAGER:SSMCDAT2023:用于从科学文献中自动提取材料化学数据的自然语言处理和大型语言模型
- 批准号:
2334411 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
- 批准号:
10759721 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Improving extraction success of FFPE samples with automated and reliable microfluidic sample preparation
通过自动化、可靠的微流体样品制备提高 FFPE 样品的提取成功率
- 批准号:
10547272 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
ENABLING CLINICAL RESEARCH IN EMERGENCY AND ACUTE CARE MEDICINE THROUGH AUTOMATED DATA EXTRACTION
通过自动数据提取实现急诊和急症护理医学的临床研究
- 批准号:
10040822 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
EU-Funded
Automated Extraction of Fields of Interest from Unstructured Documents
从非结构化文档中自动提取感兴趣的领域
- 批准号:
571403-2021 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Alliance Grants
Specification Extraction for Automated Documentation Generation
自动生成文档的规范提取
- 批准号:
562321-2021 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
University Undergraduate Student Research Awards
TOPIC 425 - AUTOMATED MOTION EXTRACTION AND ANALYSIS TO QUANTIFY PATIENT PERFORMANCE STATUS
主题 425 - 自动运动提取和分析以量化患者表现状态
- 批准号:
10498300 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
TOPIC 425 - AUTOMATED MOTION EXTRACTION AND ANALYSIS TO QUANTIFY PATIENT PERFORMANCE STATUS
主题 425 - 自动运动提取和分析以量化患者表现状态
- 批准号:
10647610 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别: