Machine-Learning-Optimized Refractory Metasurfaces for Thermophotovoltaic Energy Conversion
用于热光伏能量转换的机器学习优化的耐火超表面
基本信息
- 批准号:2029553
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical:Developing new, environmentally friendly energy sources is one of the grand engineering challenges faced by society. Thermophotovoltaic devices convert waste heat into usable electricity and have attracted a great research interest to satify the increasing need for electrical power. Thermophotovoltaic (TPV) systems can take advantage of many energy sources, including solar energy and waste heat from fossil fuels and industrial processes. TPV systems could enable low-weight, versatile and compact electricity generators that are noiseless, low-maintenance and energy-efficient. Realizing high-efficiency TPV systems requires advancing fundamental knowledge of materials, photonics, and design. A key challenge is to optimize multi-functional TPV components and their constituent materials for stable operation under environment and extreme temperatures. This project will use artificial intelligenc (machine learning) to merge the knowledge of optical materials with advanced optimization to achieve highly efficient TPV systems. The project will create a fundamentally new, machine-learning-assisted optimization framework for the realization of advanced TPV components. This project will leverage the extended knowledge and database of tailorable optical materials and integrate machine-learning algorithms with photonic designs.Technical:In the recent years, there has been significant research interest in engineering the optical and spectral properties of materials through the use of photonic metasurfaces for efficient energy conversion, including thermophotovoltaics. The proposed program merges advanced photonic topology optimization with deep-learning-based inverse design methods and a comprehensive material database to unlock unorthodox optical designs for the realization of highly-efficient components for TPV applications. This effort will expand the design parameter space and incorporate machine-learning approaches to achieve the dramatic improvement of the speed and efficiency of topology optimization, as well as to build a large documented materials database. Through unconventional optical design, the program aims to develop highly efficient TPV energy conversion approaches by enhancing radiative heat transfer process. The proposed TPV device could enable unparalleled energy conversion efficiency potentially exceeding 50% by matching the emissivity of the emitter to the bandgap of commercial photovoltaic cells such as silicon, gallium antimonide, indium gallium arsenide. This approach could elevate nanophotonic designs into previously unavailable regimes and can be applied to photonic systems beyond TPV.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:开发新的环保能源是社会面临的重大工程挑战之一。热光伏器件将废热转化为可用的电能,并吸引了极大的研究兴趣,以满足日益增长的电力需求。热光伏(TPV)系统可以利用许多能源,包括太阳能和来自化石燃料和工业过程的废热。TPV系统可以使重量轻,多功能和紧凑的发电机,是无声的,低维护和能源效率。实现高效TPV系统需要提高材料,光子学和设计的基础知识。一个关键的挑战是优化多功能TPV组件及其组成材料,以便在环境和极端温度下稳定运行。该项目将使用人工智能(机器学习)将光学材料的知识与先进的优化相结合,以实现高效的TPV系统。该项目将创建一个全新的机器学习辅助优化框架,用于实现先进的TPV组件。该项目将利用可定制光学材料的扩展知识和数据库,并将机器学习算法与光子设计相结合。技术:近年来,通过使用光子超颖表面进行有效的能量转换(包括热光致发光),对材料的光学和光谱特性进行工程设计的研究兴趣很大。该计划将先进的光子拓扑优化与基于深度学习的逆向设计方法和全面的材料数据库相结合,以解锁非正统的光学设计,从而实现TPV应用的高效组件。这项工作将扩大设计参数空间,并结合机器学习方法,以实现拓扑优化的速度和效率的显着提高,以及建立一个大型的文件材料数据库。通过非传统的光学设计,该计划旨在通过增强辐射传热过程来开发高效的TPV能量转换方法。所提出的TPV器件可以通过将发射器的发射率与商业光伏电池(例如硅、锑化镓、砷化铟镓)的带隙相匹配来实现无与伦比的能量转换效率,该能量转换效率可能超过50%。这种方法可以提升纳米光子设计到以前不可用的制度,并可以应用到光子系统超越TPV。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges and prospects of plasmonic metasurfaces for photothermal catalysis
- DOI:10.1515/nanoph-2022-0073
- 发表时间:2022-05-23
- 期刊:
- 影响因子:7.5
- 作者:Mascaretti, Luca;Schirato, Andrea;Naldoni, Alberto
- 通讯作者:Naldoni, Alberto
Machine learning framework for quantum sampling of highly constrained, continuous optimization problems
- DOI:10.1063/5.0060481
- 发表时间:2021-05
- 期刊:
- 影响因子:15
- 作者:Blake A. Wilson;Z. Kudyshev;A. Kildishev;S. Kais;V. Shalaev;A. Boltasseva
- 通讯作者:Blake A. Wilson;Z. Kudyshev;A. Kildishev;S. Kais;V. Shalaev;A. Boltasseva
Multimetallic Metasurfaces for Enhanced Electrocatalytic Oxidations in Direct Alcohol Fuel Cells
- DOI:10.1002/lpor.202200137
- 发表时间:2022-04
- 期刊:
- 影响因子:11
- 作者:Rambabu Yalavarthi;O. Yesilyurt;Olivier Henrotte;Š. Kment;V. Shalaev;A. Boltasseva;A. Naldoni
- 通讯作者:Rambabu Yalavarthi;O. Yesilyurt;Olivier Henrotte;Š. Kment;V. Shalaev;A. Boltasseva;A. Naldoni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Boltasseva其他文献
Synthesis of a 2D tungsten MXene for electrocatalysis
用于电催化的二维钨 MXene 的合成
- DOI:
10.1038/s44160-025-00773-z - 发表时间:
2025-03-28 - 期刊:
- 影响因子:20.000
- 作者:
Anupma Thakur;Wyatt J. Highland;Brian C. Wyatt;Jiayi Xu;Nithin Chandran B. S;Bowen Zhang;Zachary D. Hood;Shiba P. Adhikari;Emad Oveisi;Barbara Pacakova;Fernando Vega;Jeffrey Simon;Colton Fruhling;Benjamin Reigle;Mohammad Asadi;Pawel P. Michałowski;Vladimir M. Shalaev;Alexandra Boltasseva;Thomas E. Beechem;Cong Liu;Babak Anasori - 通讯作者:
Babak Anasori
Bottom-up fabrication of 2D Rydberg exciton arrays in cuprous oxide
在氧化亚铜中自下而上构建二维里德堡激子阵列
- DOI:
10.1038/s43246-025-00742-1 - 发表时间:
2025-01-30 - 期刊:
- 影响因子:9.600
- 作者:
Kinjol Barua;Samuel Peana;Arya Deepak Keni;Vahagn Mkhitaryan;Vladimir M. Shalaev;Yong P. Chen;Alexandra Boltasseva;Hadiseh Alaeian - 通讯作者:
Hadiseh Alaeian
Deep learning for the design of photonic structures
用于光子结构设计的深度学习
- DOI:
10.1038/s41566-020-0685-y - 发表时间:
2020-10-05 - 期刊:
- 影响因子:32.900
- 作者:
Wei Ma;Zhaocheng Liu;Zhaxylyk A. Kudyshev;Alexandra Boltasseva;Wenshan Cai;Yongmin Liu - 通讯作者:
Yongmin Liu
Nanolasers Enabled by Metallic Nanoparticles: From Spasers to Random Lasers
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:11
- 作者:
Zhuoxian Wang;Xiangeng Meng;Alexander V. Kildishev;Alexandra Boltasseva;Vladimir M. Shalaev - 通讯作者:
Vladimir M. Shalaev
Understanding all-optical switching at the epsilon-near-zero point: a tutorial review
- DOI:
10.1007/s00340-022-07756-4 - 发表时间:
2022-01-29 - 期刊:
- 影响因子:2.000
- 作者:
Colton Fruhling;Mustafa Goksu Ozlu;Soham Saha;Alexandra Boltasseva;Vladimir M. Shalaev - 通讯作者:
Vladimir M. Shalaev
Alexandra Boltasseva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Boltasseva', 18)}}的其他基金
OP: Enabling High-Temperature Photonic Technologies with Plasmonic Ceramics
OP:利用等离激元陶瓷实现高温光子技术
- 批准号:
1506775 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Cooperative Agreement
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
- 批准号:
23K00651 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ExpandQISE: Track 1: Micron Scale Solid State Quantum Sensors Optimized through Machine Learning
ExpandQISE:轨道 1:通过机器学习优化微米级固态量子传感器
- 批准号:
2329242 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Machine learning optimized autoimmune therapeutics with a focus on Type 1 Diabetes
机器学习优化自身免疫疗法,重点关注 1 型糖尿病
- 批准号:
10697204 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Collaborative Research: SaTC: CORE: Small: UAV-NetSAFE.COM: UAV Network Security Assessment and Fidelity Enhancement through Cyber-Attack-Ready Optimized Machine-Learning Platforms
协作研究:SaTC:核心:小型:UAV-NetSAFE.COM:通过网络攻击就绪的优化机器学习平台进行无人机网络安全评估和保真度增强
- 批准号:
2006674 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: UAV-NetSAFE.COM: UAV Network Security Assessment and Fidelity Enhancement through Cyber-Attack-Ready Optimized Machine-Learning Platforms
协作研究:SaTC:核心:小型:UAV-NetSAFE.COM:通过网络攻击就绪的优化机器学习平台进行无人机网络安全评估和保真度增强
- 批准号:
2006662 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Machine learning and blockchain-backed optimized assignment matching for PSWs to improve understaffing and risk during the COVID-19 outbreak
机器学习和区块链支持的 PSW 优化分配匹配,以改善 COVID-19 爆发期间的人手不足和风险
- 批准号:
554458-2020 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Applied Research Rapid Response to COVID-19
CHS: Small: An Optimized Human-Machine Intelligence Framework for Single and Multi-Label Classification Tasks Through Active Learning
CHS:Small:通过主动学习实现单标签和多标签分类任务的优化人机智能框架
- 批准号:
1814595 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
- 批准号:
1702980 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures for Optimized Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,可优化能源、性能和可靠性
- 批准号:
1702496 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant