SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
基本信息
- 批准号:1702980
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network-on-Chip (NoC) architectures have emerged as the prevailing on-chip communication fabric for multicores and Chip Multiprocessors (CMPs). However, as NoC architectures are scaled, they face serious challenges. A key challenge in addressing optimized NoC architecture design today is the plethora of performance enhancing, energy efficient and fault tolerant techniques available to NoC designers and the large design space that must be navigated to simultaneously reduce power, improve reliability, increase performance and maintain QoS. This research proposes a new cross-layer, cross-cutting methodology spanning circuits, architectures, machine learning algorithms, and applications, aimed at designing energy-efficient, reliable and scalable NoCs. This research will result in (1) novel cross-layer design techniques that take a holistic approach of simultaneously reducing power consumption, while still achieving reliability and performance goals for NoCs, (2) a fundamental understanding of the use of hardware-amenable ML for NoC design optimization, (3) software and hardware techniques for monitoring and collecting critical data and key design parameters during network execution to optimize NoC design, and (4) modeling and simulation tools that will improve the architecture community?s design methodologies for evaluating scalable NoCs. The proposed research bridges a very important gap between hardware architects who design power management and fault tolerant techniques at the circuit and architecture level and machine learning scientists who develop predictive and optimization techniques. Due to its cross-cutting nature, the proposed research has the potential to significantly transform the design of next-generation CMPs and System-on-Chips (SoCs) where complex decisions have to be made that affect the power, performance and reliability. The research will also play a major role in education by integrating discovery with teaching and training. The PIs are committed and will continue to expand on outreach activities as part of the proposed project by making the necessary efforts to attract and train minority students in this field.
片上网络(NoC)架构已经成为多核和片上多处理器(CMP)的主流片上通信结构。然而,随着NoC架构的规模化,它们面临着严峻的挑战。当今解决优化NoC架构设计的一个关键挑战是NoC设计人员可用的大量性能增强、节能和容错技术,以及必须导航以同时降低功耗、提高可靠性、提高性能和保持QoS的大设计空间。该研究提出了一种新的跨层、跨领域的方法,涵盖电路、架构、机器学习算法和应用,旨在设计节能、可靠和可扩展的NoCs。这项研究将导致(1)新的跨层设计技术,采用整体方法,同时降低功耗,同时仍然实现NoC的可靠性和性能目标,(2)对使用硬件兼容ML进行NoC设计优化的基本理解,(3)用于在网络执行期间监视和收集关键数据和关键设计参数以优化NoC设计的软件和硬件技术,以及(4)将改进体系结构社区的建模和仿真工具?的设计方法来评估可扩展的片上网络。拟议的研究弥合了在电路和架构级别设计电源管理和容错技术的硬件架构师与开发预测和优化技术的机器学习科学家之间非常重要的差距。由于其跨领域的性质,拟议的研究有可能显着改变下一代CMP和片上系统(SoC)的设计,其中必须做出影响功率,性能和可靠性的复杂决策。该研究还将通过将发现与教学和培训相结合,在教育中发挥重要作用。作为拟议项目的一部分,项目执行人承诺并将继续扩大外联活动,作出必要的努力,吸引和培训这一领域的少数民族学生。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SPACX: Silicon Photonics-based Scalable Chiplet Accelerator for DNN Inference
- DOI:10.1109/hpca53966.2022.00066
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Yuan Li;A. Louri;Avinash Karanth
- 通讯作者:Yuan Li;A. Louri;Avinash Karanth
PIXEL: Photonic Neural Network Accelerator
- DOI:10.1109/hpca47549.2020.00046
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Kyle Shiflett;Dylan Wright;Avinash Karanth;A. Louri
- 通讯作者:Kyle Shiflett;Dylan Wright;Avinash Karanth;A. Louri
SPRINT: A High-Performance, Energy-Efficient, and Scalable Chiplet-based Accelerator with Photonic Interconnects for CNN Inference
- DOI:10.1109/tpds.2021.3139015
- 发表时间:2021
- 期刊:
- 影响因子:5.3
- 作者:Yuan Li;A. Louri;Avinash Karanth
- 通讯作者:Yuan Li;A. Louri;Avinash Karanth
GCNAX: A Flexible and Energy-efficient Accelerator for Graph Convolutional Neural Networks
- DOI:10.1109/hpca51647.2021.00070
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Jiajun Li;A. Louri;Avinash Karanth;Razvan C. Bunescu
- 通讯作者:Jiajun Li;A. Louri;Avinash Karanth;Razvan C. Bunescu
CURE: A High-Performance, Low-Power, and Reliable Network-on-Chip Design Using Reinforcement Learning
CURE:使用强化学习的高性能、低功耗、可靠的片上网络设计
- DOI:10.1109/tpds.2020.2986297
- 发表时间:2020
- 期刊:
- 影响因子:5.3
- 作者:Wang, Ke;Louri, Ahmed
- 通讯作者:Louri, Ahmed
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Louri其他文献
Ahmed Louri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Louri', 18)}}的其他基金
Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
- 批准号:
2321224 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
- 批准号:
2324644 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
- 批准号:
2311543 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
- 批准号:
2131946 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
- 批准号:
1953980 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
- 批准号:
1901165 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
- 批准号:
1812495 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
- 批准号:
1547035 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
- 批准号:
1547036 - 财政年份:2015
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
- 批准号:
2313024 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant