SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability

SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化

基本信息

  • 批准号:
    1702980
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Network-on-Chip (NoC) architectures have emerged as the prevailing on-chip communication fabric for multicores and Chip Multiprocessors (CMPs). However, as NoC architectures are scaled, they face serious challenges. A key challenge in addressing optimized NoC architecture design today is the plethora of performance enhancing, energy efficient and fault tolerant techniques available to NoC designers and the large design space that must be navigated to simultaneously reduce power, improve reliability, increase performance and maintain QoS. This research proposes a new cross-layer, cross-cutting methodology spanning circuits, architectures, machine learning algorithms, and applications, aimed at designing energy-efficient, reliable and scalable NoCs. This research will result in (1) novel cross-layer design techniques that take a holistic approach of simultaneously reducing power consumption, while still achieving reliability and performance goals for NoCs, (2) a fundamental understanding of the use of hardware-amenable ML for NoC design optimization, (3) software and hardware techniques for monitoring and collecting critical data and key design parameters during network execution to optimize NoC design, and (4) modeling and simulation tools that will improve the architecture community?s design methodologies for evaluating scalable NoCs. The proposed research bridges a very important gap between hardware architects who design power management and fault tolerant techniques at the circuit and architecture level and machine learning scientists who develop predictive and optimization techniques. Due to its cross-cutting nature, the proposed research has the potential to significantly transform the design of next-generation CMPs and System-on-Chips (SoCs) where complex decisions have to be made that affect the power, performance and reliability. The research will also play a major role in education by integrating discovery with teaching and training. The PIs are committed and will continue to expand on outreach activities as part of the proposed project by making the necessary efforts to attract and train minority students in this field.
片上网络(NOC)架构已成为用于多学院和芯片多处理器(CMP)的流行片上通信结构。但是,随着NOC架构的扩展,它们面临严重的挑战。当今解决优化的NOC体系结构设计的一个关键挑战是,可供NOC设计师使用的大量增强性能,节能和容忍度的技术以及必须导航的大型设计空间,以同时降低功率,提高可靠性,提高性能,提高性能并保持QoS。这项研究提出了一种跨越电路,体系结构,机器学习算法和应用的新的跨层,横切方法,旨在设计能效,可靠和可扩展的NOC。这项研究将导致(1)新颖的跨层设计技术,这些技术采取了同时减少功耗的整体方法,同时仍然实现了NOC的可靠性和性能目标,(2)对使用硬件无关的ML用于NOC设计的使用的基本了解,在NOC设计中使用硬件无限的ML在NOC设计中进行优化,(3)在监视和收集4个型号的构图(3)关键数据范围内(4),并收集了4个型号的设计,该模型(4)具有关键数据设计(4),该模型(4)是4个构图(4),并构成了4个构图(4),并构成了4个构图(4),并构成了4个范围的设计范围(4)设计了(4个)设计范围的设计(键入启用了纽带的设计范围)。以及将改善架构社区的设计方法的仿真工具,用于评估可扩展的NOC。拟议的研究弥合了在巡回赛和建筑级别设计电源管理和容忍技术的硬件建筑师之间的一个非常重要的差距,以及开发预测性和优化技术的机器学习科学家。由于其横切性质,拟议的研究有可能显着改变下一代CMP和芯片系统(SOC)的设计,在这些设计中必须做出复杂的决定,以影响力量,性能和可靠性。这项研究还将通过将发现与教学和培训相结合,在教育中发挥重要作用。 PIS是努力的,并将通过在该领域吸引和培训少数族裔学生的必要努力来继续扩大外展活动,作为拟议项目的一部分。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SPACX: Silicon Photonics-based Scalable Chiplet Accelerator for DNN Inference
PIXEL: Photonic Neural Network Accelerator
GCNAX: A Flexible and Energy-efficient Accelerator for Graph Convolutional Neural Networks
SPRINT: A High-Performance, Energy-Efficient, and Scalable Chiplet-based Accelerator with Photonic Interconnects for CNN Inference
15.7 An 8.3MHz GaN Power Converter Using Markov Continuous RSSM for 35dBμV Conducted EMI Attenuation and One-Cycle TON Rebalancing for 27.6dB VO Jittering Suppression
15.7 一种 8.3MHz GaN 功率转换器,使用马尔可夫连续 RSSM 实现 35dBμV 传导 EMI 衰减和单周期 TON 再平衡,实现 27.6dB VO 抖动抑制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Louri其他文献

Ahmed Louri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed Louri', 18)}}的其他基金

Collaborative Research: CSR: Small: Cross-layer learning-based Energy-Efficient and Resilient NoC design for Multicore Systems
协作研究:CSR:小型:基于跨层学习的多核系统节能和弹性 NoC 设计
  • 批准号:
    2321224
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type II: Multi-Function Cross-Layer Electro-Optic Fabrics for Reliable and Sustainable Computing Systems
合作研究:DESC:II 型:用于可靠和可持续计算系统的多功能跨层电光织物
  • 批准号:
    2324644
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311543
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
SHF: Small: Holistic Design of High-performance and Energy-efficient Accelerators for Graph Neural Networks
SHF:小型:图神经网络高性能、高能效加速器的整体设计
  • 批准号:
    2131946
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Neural-Network-based Stochastic Computing Architectures with applications to Machine Learning
合作研究:SHF:中:基于神经网络的随机计算架构及其在机器学习中的应用
  • 批准号:
    1953980
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
  • 批准号:
    1901165
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
SHF: Small: Collaborative Research: Integrated Framework for System-Level Approximate Computing
SHF:小型:协作研究:系统级近似计算的集成框架
  • 批准号:
    1812495
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
  • 批准号:
    1547034
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: A Holistic Design Methodology for Fault-Tolerant and Robust Network-on-Chips (NoCs) Architectures
SHF:小型:协作研究:容错和鲁棒片上网络 (NoC) 架构的整体设计方法
  • 批准号:
    1547035
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
  • 批准号:
    1547036
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
  • 批准号:
    72374217
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了