RAPID: IIBR Informatics: Predicting All-atom Structure of SARS-CoV-2 Related Protein Complex from 3D Cryo-Electron Microscopy Data
RAPID:IIBR 信息学:根据 3D 冷冻电子显微镜数据预测 SARS-CoV-2 相关蛋白复合物的全原子结构
基本信息
- 批准号:2030381
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outbreak of novel coronavirus disease (COVID-19) has caused a global pandemic. Knowledge on the molecular basis of novel coronavirus (SARS-CoV-2) related protein complexes is essential to providing insight of the virus and how it infects human cells, a first step in developing novel drugs and vaccines to combat SARS-CoV-2. This study will enable development of all-atom structure prediction of CoV-related protein complexes, including complex surfaces of human cells the virus infects. Prediction results will be broadly and quickly disseminated through interactive web applications to maximize the impact of the research. The results will lead to a broad range of biomedical applications, such as a better understanding of important biological functions, disease processes, development of novel drugs and vaccines, and improved preventive therapies leading to reduced health care costs. The project seeks to study ab initio all-atom structure prediction of CoV-related protein complexes based on electron cryo-microscopy (cryo-EM). Methods based on the state-of-the-art technologies of image processing for pre-processing the data, deep learning for complex structure prediction, and dynamic optimization for final refinement to reveal fundamental mechanisms of CoV-related macromolecules will be developed. The project will also provide an open-source and interactive web portal for public access of the developed tools. The work could have immediate impact on steps taken to halt the spread of SARS-CoV-2 and the current pandemic. Training opportunities for students at all levels, particularly women and underrepresented minorities will also be carried out. The results of the project can be found at: http://faculty.washington.edu/dongsi.This RAPID award is made by the Infrastructure Innovation for Biological Research (IIBR Informatics) Program in the Division of Biological Infrastructure, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新型冠状病毒病(COVID-19)爆发已导致全球大流行。了解新型冠状病毒(SARS-CoV-2)相关蛋白复合物的分子基础对于了解病毒及其如何感染人类细胞至关重要,这是开发新型药物和疫苗以对抗SARS-CoV-2的第一步。这项研究将有助于开发CoV相关蛋白质复合物的全原子结构预测,包括病毒感染的人类细胞的复杂表面。预测结果将通过交互式网络应用程序广泛而迅速地传播,以最大限度地扩大研究的影响。这些结果将导致广泛的生物医学应用,例如更好地了解重要的生物功能,疾病过程,开发新药和疫苗,以及改善预防性治疗,从而降低医疗保健成本。该项目旨在研究基于电子冷冻显微镜(cryo-EM)的CoV相关蛋白质复合物的从头算全原子结构预测。将开发基于最先进的图像处理技术的方法来预处理数据,深度学习用于复杂结构预测,动态优化用于最终细化,以揭示CoV相关大分子的基本机制。该项目还将提供一个开放源码和互动式门户网站,供公众使用所开发的工具。这项工作可能会对阻止SARS-CoV-2和当前流行病传播的措施产生直接影响。还将为各级学生,特别是妇女和代表性不足的少数民族提供培训机会。该项目的结果可以在以下网站找到:http://faculty.washington.edu/dongsi.This RAPID奖由生物基础设施部的生物研究基础设施创新(IIBR信息学)计划颁发,使用冠状病毒援助,救济和经济安全(CARES)法案的资金。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Si其他文献
Automated Protein Chain Isolation from 3D Cryo-EM Data and Volume Comparison Tool
从 3D 冷冻电镜数据和体积比较工具中自动分离蛋白质链
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Michael Nissenson;Dong Si - 通讯作者:
Dong Si
Psychosis iREACH: Reach for Psychosis Treatment using Artificial Intelligence
精神病 iREACH:利用人工智能实现精神病治疗
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jonathan Lee;S. Kopelovich;S. C. Cheng;Dong Si - 通讯作者:
Dong Si
EMNets: A Convolutional Autoencoder for Protein Surface Retrieval Based on Cryo-Electron Microscopy Imaging
EMNets:基于冷冻电子显微镜成像的蛋白质表面检索卷积自动编码器
- DOI:
10.1145/3233547.3233707 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jingjing Yang;Renzhi Cao;Dong Si - 通讯作者:
Dong Si
A Graph Based Method for the Prediction of Backbone Trace from Cryo-EM Density Maps
一种基于冷冻电镜密度图预测骨干轨迹的图方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
P. Collins;Dong Si - 通讯作者:
Dong Si
Intensification of the Atlantic Multidecadal Variability Since 1870: Implications and Possible Causes
1870 年以来大西洋数十年变率的加剧:影响和可能的原因
- DOI:
10.1029/2019jd030977 - 发表时间:
2020-06 - 期刊:
- 影响因子:4.4
- 作者:
Dong Si;Jiang Dabang;Wang Huijun - 通讯作者:
Wang Huijun
Dong Si的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data
IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法
- 批准号:
2400009 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IIBR Informatics: Accurate assessment of protein-DNA complex models and applications
IIBR 信息学:蛋白质-DNA 复杂模型和应用的准确评估
- 批准号:
2051491 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data
IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法
- 批准号:
2051283 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IIBR Informatics: Mining Spatial and Single-cell Transcriptomes to Understand Cell Locality and Heterogeneity in Tissues
IIBR 信息学:挖掘空间和单细胞转录组以了解组织中的细胞局部性和异质性
- 批准号:
2042159 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: IIBR Informatics: A reinforced imputation framework for accurate gene expression recovery from single-cell RNA-seq data
EAGER:IIBR 信息学:从单细胞 RNA-seq 数据中准确恢复基因表达的强化插补框架
- 批准号:
1945971 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
- 批准号:
2030604 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: IIBR Informatics: Keeping up with the genomes - Continual Learning of Metagenomic Data
合作研究:IIBR 信息学:跟上基因组的步伐 - 宏基因组数据的持续学习
- 批准号:
1936782 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
EAGER: IIBR Informatics: Deep learning tools for the identification of RNA modifications from direct RNA sequencing data
EAGER:IIBR 信息学:用于从直接 RNA 测序数据中识别 RNA 修饰的深度学习工具
- 批准号:
1949036 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IIBR: Informatics: RAPID: Genome-wide Structure and Function Modeling of the SARS-CoV-2 Virus
IIBR:信息学:RAPID:SARS-CoV-2 病毒的全基因组结构和功能建模
- 批准号:
2030790 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
IIBR Informatics: An Efficient Pangenomics Graph Aligner
IIBR 信息学:高效的泛基因组图对齐器
- 批准号:
2029552 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant