EAGER: Neural Behavioral Analysis (NBA) Pipeline for Behavior and Neural Activity Analysis in Autism
EAGER:用于自闭症行为和神经活动分析的神经行为分析 (NBA) 流程
基本信息
- 批准号:2035018
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Naturalistic behaviors are external reflections of brain's internal integration of bottom up processes that mediate inputs sent to the brain, and top down processes that mediate appropriate responses determined by the brain. Measuring behavioral data without concurrent neuronal activity monitoring would only provide an incomplete picture of brain function. One bottleneck in the field is that these behavioral data and neuronal activity data are typically collected separately under different experimental paradigms and subsequently analyzed with different analytical pipelines. It is, therefore, impractical to infer mechanistic correlation between behavior and neural activity using these existing pipelines. A system that enables simultaneous collection of behavior and neuronal activity data followed by integrated decoding of these two types of data would be a breakthrough that offers unique opportunities to explore behavior and its governing neuron activity pattern. This project will take advantage of a clinically relevant mouse model of autism, to develop a novel machine learning based pipeline for simultaneous decoding of behavioral and neuronal activity data. By providing an novel and integrated data analytic toolkit which enables analysis of high-dimensional large data sets of behaviors and neural activities in an autistic mouse model, this project will delineate the temporal and spatial pattern of neural activities underlying social deficits and sensory abnormities which might provide a novel mechanistic link between those two keys symptoms of autism. Besides providing a powerful and versatile toolkit, this project will help fill in the critical knowledge gap between brain circuit functional changes and social behavioral deficits in autism, with the potential of strong impact on other psychiatry disorders, such as schizophrenia and bipolar disorders.By developing a novel machine learning based pipeline to enable simultaneous analysis of animal behaviors and neuronal activities, this project will focus on addressing the following three research challenges: (1) concurrently collecting large data sets of mouse social behaviors and neural activity in different brain areas using intravital calcium imaging, which will be used to establish and optimize the machine learning-based neural behavioral analysis pipeline, (2) validating the neural behavioral analysis pipeline in an autistic mouse model, (3) using the neural behavioral analysis pipeline to interrogate mouse behavior and calcium imaging data from different brain areas and infer causal relation between neural activity pattern and autism-like behavior traits. Using unbiased machine learning algorithms to extract videotaped behavioral and neural imaging data in a high-throughput manner, this project will be able to make sense of neural circuit data in the context of complex behavior deficits. Successful execution of the proposal will establish a general "computational behavior-neural function" framework capable of identifying the hierarchy of social deficits and sensory abnormalities in autistic mice, which will provide a powerful tool to the field to untangle complex animal behavior and neuronal activity pattern for mechanistic exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然主义行为是大脑内部整合的外部反映,自下而上的过程调解发送给大脑的输入,自上而下的过程调解由大脑决定的适当反应。在不同时监测神经元活动的情况下测量行为数据只能提供一个不完整的大脑功能图像。该领域的一个瓶颈是,这些行为数据和神经元活动数据通常是在不同的实验范式下分别收集的,随后用不同的分析管道进行分析。因此,利用这些现有的管道来推断行为和神经活动之间的机制相关性是不切实际的。一个系统能够同时收集行为和神经元活动数据,然后对这两种类型的数据进行综合解码,这将是一个突破,为探索行为及其控制神经元活动模式提供了独特的机会。该项目将利用临床相关的自闭症小鼠模型,开发一种新的基于机器学习的管道,用于同时解码行为和神经元活动数据。通过提供一种新颖的集成数据分析工具包,可以分析自闭症小鼠模型中行为和神经活动的高维大数据集,该项目将描绘社会缺陷和感觉异常背后的神经活动的时空模式,这可能为自闭症这两个关键症状之间提供一种新的机制联系。除了提供一个强大而多功能的工具包外,该项目将有助于填补自闭症患者大脑回路功能变化和社会行为缺陷之间的关键知识空白,并有可能对其他精神疾病,如精神分裂症和双相情感障碍产生重大影响。通过开发一种新的基于机器学习的管道来同时分析动物行为和神经元活动,该项目将专注于解决以下三个研究挑战:(1)利用活体钙成像技术同时收集小鼠不同脑区社交行为和神经活动的大数据集,用于建立和优化基于机器学习的神经行为分析管道;(2)在自闭症小鼠模型上验证神经行为分析管道;(3)利用神经行为分析管道查询小鼠不同脑区的行为和钙成像数据,推断神经活动模式与自闭症样行为特征之间的因果关系。使用无偏机器学习算法以高通量的方式提取视频行为和神经成像数据,该项目将能够在复杂行为缺陷的背景下理解神经回路数据。该建议的成功实施将建立一个通用的“计算行为-神经功能”框架,能够识别自闭症小鼠的社会缺陷和感觉异常的层次,这将为该领域解开复杂的动物行为和神经元活动模式提供一个强大的工具,用于机械探索。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qian Chen其他文献
Molecular Mechanism of Polysaccharides Extracted from Chinese Medicine Targeting Gut Microbiota for Promoting Health
中药多糖靶向肠道菌群促进健康的分子机制
- DOI:
10.1007/s11655-022-3522-y - 发表时间:
2022-05 - 期刊:
- 影响因子:2.9
- 作者:
Wen-Xiao Zhao;Tong Wang;Ya-Nan Zhang;Qian Chen;Yuan Wang;Yan-Qing Xing;Jun Zheng;Chen-Chen Duan;Li-Jun Chen;Hai-Jun Zhao;Shi-Jun Wang - 通讯作者:
Shi-Jun Wang
Synthesis, Structure, and Reactivity of Dicarbene Dipalladium Complexes
二碳烯二钯配合物的合成、结构和反应活性
- DOI:
10.1002/zaac.201200425 - 发表时间:
2013-03 - 期刊:
- 影响因子:1.4
- 作者:
Yunfei Li;Longguang Yang;Qian Chen;Changsheng Cao;Pei Guan;Guangsheng Pang;Yanhui Shi - 通讯作者:
Yanhui Shi
Short-cut waste activated sludge fermentation and application nbsp;of fermentation liquid to improve heterotrophic aerobic nitrogennbsp;removal by Agrobacterium sp. LAD9
废活性污泥的捷径发酵及应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:15.1
- 作者:
Lina Pang;Jinren Ni;Xiaoyan Tang;Qian Chen - 通讯作者:
Qian Chen
Multiple uncertainty relation for accelerated quantum information
加速量子信息的多重不确定性关系
- DOI:
10.1103/physrevd.102.096009 - 发表时间:
2020-04 - 期刊:
- 影响因子:5
- 作者:
Qian Chen;Wu Ya-Dong;Ji Jia-Wei;Xiao Yunlong;S;ers Barry C. - 通讯作者:
ers Barry C.
A Control Strategy of Islanded Microgrid With Nonlinear Load for Harmonic Suppression
- DOI:
10.1109/access.2021.3064413 - 发表时间:
2021-03 - 期刊:
- 影响因子:3.9
- 作者:
Qian Chen - 通讯作者:
Qian Chen
Qian Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qian Chen', 18)}}的其他基金
CAREER: The Regulation of Cytokinesis by Calcium
职业:钙对细胞分裂的调节
- 批准号:
2144701 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
EAGER: CAS-MNP: Mapping the structure–property relationships of micro- and nanoplastics by in-situ nanoscopic imaging and simulation
EAGER:CAS-MNP:通过原位纳米成像和模拟绘制微米和纳米塑料的结构与性能关系
- 批准号:
2034496 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: Imaging and Understanding the Kinetic Pathways in Shape-Anisotropic Nanoparticle Self-Assembly
职业:成像和理解形状各向异性纳米粒子自组装的动力学路径
- 批准号:
1752517 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Research Initiation Award: Towards Realizing a Self-Protecting Healthcare Information System for the Internet of Medical Things
研究启动奖:实现医疗物联网自我保护医疗信息系统
- 批准号:
1700391 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Research Initiation Award: Towards Realizing a Self-Protecting Healthcare Information System for the Internet of Medical Things
研究启动奖:实现医疗物联网自我保护医疗信息系统
- 批准号:
1812599 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
International Collaboration in Chemistry: Synthesis and Assembly of Shape-Adjustable, Reconfigurable Nanocrystals
化学国际合作:形状可调、可重构纳米晶体的合成和组装
- 批准号:
1303757 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
- 批准号:
2341006 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
- 批准号:
23K28389 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Towards a neurobiology of "oromanual" motor control: behavioral analysis and neural mechanisms
走向“手动”运动控制的神经生物学:行为分析和神经机制
- 批准号:
10819032 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Neural and Behavioral Indices of Balance Performance in Individuals with sensory loss
感觉丧失个体平衡表现的神经和行为指数
- 批准号:
10751174 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Dissecting Behavioral and Neural Mechanisms of Hand Dexterity after Stroke for Effective Rehabilitation
剖析中风后手部灵活性的行为和神经机制,以实现有效康复
- 批准号:
10803644 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Neural Mechanisms that Underlie Flexible Sensory Control of Behavioral States in C. elegans
线虫行为状态灵活感觉控制的神经机制
- 批准号:
10659880 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Investigating the role of substance use exposure and maternal psychological risk on child neural and behavioral assessments of executive functioning
调查物质使用暴露和母亲心理风险对儿童执行功能神经和行为评估的作用
- 批准号:
10748874 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Analysis of molecular and neural basis of the brain correlated with behavioral characteristics of cockroaches
与蟑螂行为特征相关的大脑分子和神经基础分析
- 批准号:
23K18148 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of the neural circuitry underlying individual differences in behavioral changes induced by chronic social stress
阐明慢性社会压力引起的行为变化个体差异背后的神经回路
- 批准号:
23KJ1550 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




