RTG: Mathematics of Information and Data with Applications to Science

RTG:信息和数据数学及其在科学中的应用

基本信息

  • 批准号:
    2038039
  • 负责人:
  • 金额:
    $ 249.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The big-data revolution has transformed many areas of engineering, industry, mathematics, and science. For instance, data generated through genome-wide association studies, observations from telescopes, and computational simulations on petaflop computers provide tremendous opportunities to better understand the world around us. These massive datasets also pose many challenges, and there has been an explosion of research in recent years about how to manipulate, store, and extract meaningful information from ever-larger amounts of data. Mathematical analysis, algorithms, and insights have been and will continue to be a crucial component of this research effort. This RTG project will focus on the mathematical foundations and applications of data science and will catalyze research collaborations that combine different mathematical perspectives to address emerging challenges and opportunities. The mathematical challenges of data science also present a unique and transformative opportunity to develop more systematic and integrated training for the next generation; the project will broaden and enhance the scope and quality of the educational and research training provided to graduate students and postdoctoral fellows and will involve more undergraduate students, particularly students from historically underrepresented groups, in courses and research experiences in applied mathematics, increasing the workforce trained in data science.The project focuses on research and training in the mathematical foundations of data science and its applications. The research projects have strong interdisciplinary flavor, combining fundamental stochastic, statistical, combinatorial, dynamical, and computational aspects with concrete applications. Projects will involve collaborations with domain scientists from other disciplines, including astrophysics, biology, engineering, and neuroscience. Topics will include applying machine learning and Bayesian statistics tools to deriving, analyzing, and simulating partial differential equations; designing optimal closed-loop experiments using statistical inference; advancing techniques in discrete optimization; developing combinatorial models in neuroscience; understanding random projections of high-dimensional measures; and constructing dimension reduction techniques that preserve relevant structure of large data sets. The educational activities focus on vertically integrated training of undergraduates, graduate students, and postdoctoral fellows. Training activities include a first-year seminar focused on the interface of data and social justice, enhanced undergraduate and graduate curricula, summer research experiences for undergraduates, graduate students, and postdoctoral fellows, and working groups for advanced graduate students and postdoctoral fellows. The broader impacts include the recruitment, retention, and training of a diverse cohort of applied mathematicians trained in data science. In addition, the research planned in genome-wide association studies, design of closed-loop neuroscience experiments, single-cell data alignment, image restoration, simulation of Hubble data, self-assembly, inference of dynamical brain data, and data compression and reduction aims to have impact in applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大数据革命已经改变了工程、工业、数学和科学的许多领域。例如,通过全基因组关联研究、望远镜观测和petaflop计算机上的计算模拟生成的数据为更好地了解我们周围的世界提供了巨大的机会。这些庞大的数据集也带来了许多挑战,近年来,关于如何从越来越多的数据中操作、存储和提取有意义的信息的研究出现了爆炸式增长。数学分析、算法和见解一直是并将继续是这项研究工作的重要组成部分。该RTG项目将专注于数据科学的数学基础和应用,并将促进联合收割机结合不同数学视角的研究合作,以应对新出现的挑战和机遇。数据科学的数学挑战也提供了一个独特的变革性机会,为下一代开发更系统和综合的培训。该项目将扩大和提高向研究生和博士后研究员提供的教育和研究培训的范围和质量,并将使更多的本科生,特别是来自历来代表性不足群体的学生,在应用数学的课程和研究经验,增加在数据科学培训的劳动力。该项目的重点是研究和培训数据科学及其应用的数学基础。这些研究项目具有浓厚的跨学科色彩,将基本的随机、统计、组合、动力和计算方面与具体应用相结合。项目将涉及与来自其他学科的领域科学家的合作,包括天体物理学,生物学,工程学和神经科学。主题将包括应用机器学习和贝叶斯统计工具来推导,分析和模拟偏微分方程;使用统计推断设计最佳闭环实验;推进离散优化技术;开发神经科学中的组合模型;理解高维度量的随机投影;构建保留大型数据集相关结构的降维技术。教育活动的重点是本科生,研究生和博士后研究员的垂直整合培训。培训活动包括第一年的研讨会,重点是数据和社会正义的接口,增强本科生和研究生课程,本科生,研究生和博士后研究员的夏季研究经验,以及高级研究生和博士后研究员的工作组。更广泛的影响包括招聘、留住和培训一批受过数据科学培训的应用数学家。此外,该研究计划在全基因组关联研究、闭环神经科学实验设计、单细胞数据比对、图像恢复、哈勃数据模拟、自组装、动态脑数据推断、该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SCOTv2: Single-Cell Multiomic Alignment with Disproportionate Cell-Type Representation
The Drift of #MyBodyMyChoice Discourse on Twitter
的漂移
  • DOI:
    10.1145/3501247.3531570
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Menghini, Cristina;Uhr, Justin;Haddadan, Shahrzad;Champagne, Ashley;Sandstede, Bjorn;Ramachandran, Sohini
  • 通讯作者:
    Ramachandran, Sohini
Unsupervised Integration of Single-Cell Multi-omics Datasets with Disproportionate Cell-Type Representation
具有不成比例的细胞类型表示的单细胞多组学数据集的无监督整合
Quantifying Different Modeling Frameworks Using Topological Data Analysis: A Case Study with Zebrafish Patterns
  • DOI:
    10.1137/22m1543082
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Cleveland,Electa;Zhu,Angela;Volkening,Alexandria
  • 通讯作者:
    Volkening,Alexandria
Parameter Identifiability in PDE Models of Fluorescence Recovery After Photobleaching
  • DOI:
    10.1007/s11538-024-01266-4
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Ciocanel,Maria-Veronica;Ding,Lee;Sandstede,Bjorn
  • 通讯作者:
    Sandstede,Bjorn
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bjorn Sandstede其他文献

Dynamics of Spiral Waves on Unbounded Domains Using Center-Manifold Reductions
使用中心流形约简的无界域上的螺旋波动力学
  • DOI:
    10.1006/jdeq.1997.3326
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Bjorn Sandstede;A. Scheel;C. Wulff
  • 通讯作者:
    C. Wulff
Absolute instabilities of standing pulses
驻脉冲的绝对不稳定性
  • DOI:
    10.1088/0951-7715/18/1/017
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bjorn Sandstede;A. Scheel
  • 通讯作者:
    A. Scheel
Stability of N -fronts bifurcating from a twisted heteroclinic loop and an application to the FitzHugh-Nagumo equation
Viscous perturbations of marginally stable Euler flow and finite-time Melnikov theory
边际稳定欧拉流的粘性扰动和有限时间梅尔尼科夫理论
  • DOI:
    10.1088/0951-7715/18/2/001
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    E. Grenier;C. Jones;F. Rousset;Bjorn Sandstede
  • 通讯作者:
    Bjorn Sandstede
Stability of pulses in the master mode-locking equation
主锁模方程中脉冲的稳定性

Bjorn Sandstede的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bjorn Sandstede', 18)}}的其他基金

Spiral Waves and Target Patterns
螺旋波和目标模式
  • 批准号:
    2106566
  • 财政年份:
    2021
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Standard Grant
TRIPODS+X: EDU: Collaborative Research: Investigations of Student Difficulties in Data Science Instruction
TRIPODS X:EDU:协作研究:学生在数据科学教学中遇到的困难的调查
  • 批准号:
    1839259
  • 财政年份:
    2018
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Standard Grant
Tripods+X:Res:Collaborative Research: Identification of Gene Regulatory Network Function from Data
Tripods X:Res:协作研究:从数据中识别基因调控网络功能
  • 批准号:
    1839262
  • 财政年份:
    2018
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Standard Grant
Dynamics and Stability of Spatially Extended Patterns
空间扩展模式的动力学和稳定性
  • 批准号:
    1714429
  • 财政年份:
    2017
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Standard Grant
Foundations of Model Driven Discovery from Massive Data
海量数据中模型驱动发现的基础
  • 批准号:
    1740741
  • 财政年份:
    2017
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Standard Grant
Nonlinear stability of patterns
模式的非线性稳定性
  • 批准号:
    1408742
  • 财政年份:
    2014
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Continuing Grant
RTG: Integrating Dynamics and Stochastics (IDyaS)
RTG:动态和随机积分 (IDyaS)
  • 批准号:
    1148284
  • 财政年份:
    2012
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Continuing Grant
Conference on Geometric Methods in Infinite-dimensional Dynamical Systems
无限维动力系统几何方法会议
  • 批准号:
    1140723
  • 财政年份:
    2011
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Standard Grant
Dynamics near coherent structures
近相干结构的动力学
  • 批准号:
    0907904
  • 财政年份:
    2009
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: Absolute and essential instabilities in spatially extended systems
合作研究:空间扩展系统中的绝对和本质不稳定性
  • 批准号:
    0203854
  • 财政年份:
    2002
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Standard Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
数学之源书(Source book in mathematics)的翻译与出版
  • 批准号:
    11826405
  • 批准年份:
    2018
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
怀尔德“Mathematics as a cultural system”翻译研究
  • 批准号:
    11726404
  • 批准年份:
    2017
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Methodology of Project Based Learning in Mathematics, Information and Period for Inquiry-Based Cross-Disciplinary Study by Design Thinking
数学、信息与时期的项目式学习方法论,以设计思维进行探究式跨学科学习
  • 批准号:
    23K18917
  • 财政年份:
    2023
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
  • 批准号:
    2231533
  • 财政年份:
    2023
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Continuing Grant
Categorical and Higher-Categorical Approaches to Duality and Semantics across Mathematics, Physics, and Information
跨数学、物理和信息的二元性和语义的分类和更高分类方法
  • 批准号:
    17K14231
  • 财政年份:
    2021
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Cambridge Mathematics of Information in Healthcare (CMIH)
剑桥医疗保健信息数学 (CMIH)
  • 批准号:
    EP/T017961/1
  • 财政年份:
    2020
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Research Grant
Co-occurrence network analysis of the overall structure about mathematics, science and information subjects using scientific terms
使用科学术语对数学、科学和信息学科整体结构进行共现网络分析
  • 批准号:
    20K03220
  • 财政年份:
    2020
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of mathematics and quantum information to computing and cryptography
数学和量子信息在计算和密码学中的应用
  • 批准号:
    543026-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Co-occurrence network analysis of scientific terms used in mathematics, science and information subjects
数学、科学和信息学科中使用的科学术语的共现网络分析
  • 批准号:
    17K01009
  • 财政年份:
    2017
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical mathematics for population dynamics models: information criterion, observation model, approximate Bayesian computation
种群动态模型的统计数学:信息准则、观测模型、近似贝叶斯计算
  • 批准号:
    17K07578
  • 财政年份:
    2017
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computability, Reverse Mathematics, and Information Coding
可计算性、逆向数学和信息编码
  • 批准号:
    1600543
  • 财政年份:
    2016
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Continuing Grant
Scientific Information Service for Mathematics
数学科学信息服务
  • 批准号:
    267123568
  • 财政年份:
    2015
  • 资助金额:
    $ 249.16万
  • 项目类别:
    Acquisition and Provision (Scientific Library Services and Information Systems)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了