RTG: The Mathematics of Quantum Information Science

RTG:量子信息科学的数学

基本信息

  • 批准号:
    2231533
  • 负责人:
  • 金额:
    $ 250万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Quantum Information Science (QIS) aims to develop new ways to compute and communicate by taking advantage of the unique properties of matter at the atomic level. This includes advances in cryptography, faster calculations, and better understanding of natural processes taking place at the atomic level. Because of its spanning impact, QIS addresses many areas of national interest, including cybersecurity, pharmaceuticals, financial services, health care, among others. QIS involves a fundamentally different logic than classical information science, and advances in the field (in areas such as quantum algorithms and quantum cryptography) have often depended on creative mathematical breakthroughs. Furthermore, mathematics is an accessible entry point to QIS for students and mentors from a wide range of backgrounds and skill levels. With these principles in mind, this project strengthens both mathematics and QIS by training mathematicians to enter the world of quantum research. A holistic curriculum guides program participants from learning quantum principles to applying sophisticated mathematical tools to advance QIS, while also exploring the societal impact of their research. This project will support the involvement of undergraduate and graduate students, and postdoc fellows from the Mathematical Sciences, to be mentored by faculty who are leaders in fields relevant to mathematics and quantum science. By expanding QIS training to Mathematics, this project will contribute to a more robust and diverse QIS workforce.This project will advance mathematics by tackling cutting-edge theoretical questions within three research themes that are mature enough to allow for mathematical treatment and innovation: Quantum Algorithms, Quantum Cryptography, and Quantum Systems. Each of these themes has rigorous mathematical models (that the community agrees are useful) and these models rise to an abundance of mathematical problems that are yet to be explored and whose solution is likely to have high impact on scientific computing, cybersecurity, and nanotechnology. Fifteen faculty will mentor undergraduate, graduate, and postdoctoral researchers in QIS projects that draw from algebra/representation theory, nonlinear analysis, partial differential equations, scientific computing, and stochastic analysis. Research goals will include: to develop new and enhance existing quantum algorithms, to use the power of mathematics to expand the range and usefulness of quantum cryptography, and to improve Quantum Information Science through advances in quantum systems theory and vice versa. The project is expected to stimulate the research and careers of mathematicians by equipping them to pursue research in Quantum Information Science, both at the University of Maryland, College Park level and at the national level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子信息科学(QIS)旨在通过利用原子水平上物质的独特性质来开发计算和通信的新方法。这包括密码学的进步,更快的计算,以及更好地理解原子水平上发生的自然过程。由于其跨越式的影响,QIS解决了国家利益的许多领域,包括网络安全,制药,金融服务,医疗保健等。量子信息系统涉及与经典信息科学根本不同的逻辑,该领域的进展(如量子算法和量子密码学)通常依赖于创造性的数学突破。此外,数学是一个可访问的切入点QIS的学生和导师从广泛的背景和技能水平。考虑到这些原则,该项目通过培训数学家进入量子研究世界来加强数学和QIS。一个整体的课程指导计划参与者从学习量子原理到应用复杂的数学工具来推进QIS,同时也探索他们的研究的社会影响。该项目将支持本科生和研究生的参与,以及来自数学科学的博士后研究员,由数学和量子科学相关领域的领导者指导。通过将QIS培训扩展到数学,该项目将有助于建立更强大和多样化的QIS员工队伍。该项目将通过解决三个研究主题中的前沿理论问题来推进数学,这些研究主题已经足够成熟,可以进行数学处理和创新:量子算法,量子密码学和量子系统。这些主题中的每一个都有严格的数学模型(社区同意是有用的),这些模型产生了大量的数学问题,这些问题尚未被探索,其解决方案可能对科学计算,网络安全和纳米技术产生重大影响。15名教师将指导QIS项目的本科生,研究生和博士后研究人员,这些项目来自代数/表示理论,非线性分析,偏微分方程,科学计算和随机分析。研究目标将包括:开发新的和增强现有的量子算法,利用数学的力量来扩大量子密码学的范围和实用性,并通过量子系统理论的进步来改进量子信息科学,反之亦然。该项目预计将刺激的研究和职业生涯的数学家,装备他们追求量子信息科学的研究,无论是在马里兰州,学院公园一级和国家一级。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantina Trivisa其他文献

On the Motion of a Viscous Compressible Radiative-Reacting Gas
  • DOI:
    10.1007/s00220-006-1534-7
  • 发表时间:
    2006-03-09
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Donatella Donatelli;Konstantina Trivisa
  • 通讯作者:
    Konstantina Trivisa
On a free boundary problem for polymeric fluids: global existence of weak solutions

Konstantina Trivisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantina Trivisa', 18)}}的其他基金

On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
  • 批准号:
    2008568
  • 财政年份:
    2020
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
On the Dynamics of Nonlinear Systems in Applied Sciences
应用科学中的非线性系统动力学
  • 批准号:
    1614964
  • 财政年份:
    2016
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
ON THE DYNAMICS, STRUCTURE AND STABILITY OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    1211519
  • 财政年份:
    2012
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
ON THE DYNAMICS OF CERTAIN NONLINEAR SYSTEMS IN APPLIED SCIENCES: TRANSPORT, MOTION AND MIXING
应用科学中某些非线性系统的动力学:输运、运动和混合
  • 批准号:
    1109397
  • 财政年份:
    2011
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
On the Dynamics, Structure and Stability of Certain Nonlinear Systems in Applied Sciences
应用科学中某些非线性系统的动力学、结构和稳定性
  • 批准号:
    0807815
  • 财政年份:
    2008
  • 资助金额:
    $ 250万
  • 项目类别:
    Continuing Grant
Challenges in Systems with Semctic and Nematic Order
具有近序和向列序的系统面临的挑战
  • 批准号:
    0405853
  • 财政年份:
    2004
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
PECASE: Systems of Conservation Laws and Related Models in Applied Sciences - Math Awareness and Outreach
PECASE:应用科学中的守恒定律体系和相关模型 - 数学意识和推广
  • 批准号:
    0239063
  • 财政年份:
    2003
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0196157
  • 财政年份:
    2000
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Hyperbolic Systems of Conservation Laws - Viscous Conservation Laws - Applications
守恒定律的双曲系统 - 粘性守恒定律 - 应用
  • 批准号:
    0072496
  • 财政年份:
    2000
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
数学之源书(Source book in mathematics)的翻译与出版
  • 批准号:
    11826405
  • 批准年份:
    2018
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
怀尔德“Mathematics as a cultural system”翻译研究
  • 批准号:
    11726404
  • 批准年份:
    2017
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
Frontiers of Mathematics in China
  • 批准号:
    11024802
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
  • 批准号:
    2317280
  • 财政年份:
    2023
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
the Mathematics of Quantum Computation
量子计算数学
  • 批准号:
    CRC-2021-00277
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    Canada Research Chairs
Universal Formulation of the Uncertainty Principle and Mathematics of Quantum Phenomena
不确定性原理和量子现象数学的通用表述
  • 批准号:
    22K13970
  • 财政年份:
    2022
  • 资助金额:
    $ 250万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent undergraduate education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2134832
  • 财政年份:
    2021
  • 资助金额:
    $ 250万
  • 项目类别:
    Cooperative Agreement
Mathematics of Quantum Wires and Applications to Quantum Materials
量子线数学及其在量子材料中的应用
  • 批准号:
    551539-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 250万
  • 项目类别:
    University Undergraduate Student Research Awards
NSF Convergence Accelerator- Track C: QuSTEAM: Convergent Undergraduate Education in Quantum Science, Technology, Engineering, Arts, and Mathematics
NSF 融合加速器 - 轨道 C:QuSTEAM:量子科学、技术、工程、艺术和数学领域的融合本科教育
  • 批准号:
    2040581
  • 财政年份:
    2020
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
FET: A research triangle of quantum mathematics, computational complexity, and geometric topology
FET:量子数学、计算复杂性和几何拓扑的研究三角
  • 批准号:
    2009029
  • 财政年份:
    2020
  • 资助金额:
    $ 250万
  • 项目类别:
    Standard Grant
Applications of mathematics and quantum information to computing and cryptography
数学和量子信息在计算和密码学中的应用
  • 批准号:
    543026-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 250万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Mathematics of the Aharonov-Bohm medium and applications to quantum materials
阿哈罗诺夫-玻姆介质的数学及其在量子材料中的应用
  • 批准号:
    542038-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 250万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了