EAGER: SaTC: SAVED: Secure Audio and Video Data from Deepfake Attacks Leveraging Environmental Fingerprints

EAGER:SaTC:SAVED:利用环境指纹保护音频和视频数据免遭 Deepfake 攻击

基本信息

  • 批准号:
    2039342
  • 负责人:
  • 金额:
    $ 25.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The fast development of artificial intelligence (AI) and machine learning algorithms is escalating the technology that empowers the ability to distort reality. It has taken an exponential leap forward to deepfake attacks, which create audio and video of real people saying and doing things they never said or did. It is ever more realistic and increasingly resistant to detection. Deepfaked video, audio, or photos published on social media platforms are highly disturbing and able to mislead the public, raising further challenges in policy, technology, social, and legal aspects. Today's deepfake tools allow people to become anyone, from Elon Musk to Eminem, during a video chat. Recent deepfake video attacks on some public scenarios have raised more concerns. Disinformation may actually cause a disturbance in our society and ruin the foundation of trust. Government agencies like the U.S. Defense Advanced Research Projects Agency (DARPA) are concerned about losing the war against deepfake attacks that use the popular machine learning technique to automatically incorporate artificial components into existing video streams. The detailed technical routines and countermeasures against deepfake attacks have not been well investigated, leaving alone a potentially effective approach to tackle the emerging threats online in real-time.This project introduces a novel solution to secure audio and video data streams against deepfake attacks. Instead of engaging in the endless AI arm races that fight fire with fire, where new machine learning algorithms keep making fake audio and video more real, this project tackles the challenging problem out of the box based on a key observation. Every audio or video stream has unique environmental fingerprints, e.g. the Electrical Network Frequency (ENF) signals, embedded when it was generated. The environmental fingerprints are random signals, which are unique, unpredictable, and unrepeatable. This project will investigate three typical application scenarios: (1) an accurate detection of deepfaked AVS data uploaded on the Internet, like social media posts; (2) an instant and accurate detection of false AVS injection attacks against online, real-time applications, like teleconferencing; and (3) a lightweight but robust version that fits on the Internet of Video Things applications, like smart public safety surveillance, which requires instant decision-making at the network edge. In addition, this project will gain deeper insights into the characteristics of the environmental fingerprints taking an information theory approach. The success of this research will deliver a disruptive technology that enables the ultimate win of the battle against the deepfake attacks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)和机器学习算法的快速发展正在升级技术,使其能够扭曲现实。它已经采取了指数级的飞跃,以deepfake攻击,它创建了真实的人说和做他们从未说过或做过的事情的音频和视频。它比以往任何时候都更真实,越来越难以被发现。在社交媒体平台上发布的深度伪造的视频、音频或照片非常令人不安,并可能误导公众,从而在政策、技术、社会和法律的方面带来进一步的挑战。今天的deepfake工具允许人们在视频聊天中成为任何人,从埃隆马斯克到阿姆。最近对一些公共场景的Deepfake视频攻击引发了更多担忧。虚假信息实际上可能会在我们的社会中造成混乱,破坏信任的基础。像美国国防高级研究计划局(DARPA)这样的政府机构担心会输掉针对Deepfake攻击的战争,Deepfake攻击使用流行的机器学习技术自动将人工组件纳入现有的视频流。针对deepfake攻击的详细技术例程和对策尚未得到很好的研究,更不用说实时解决在线新兴威胁的潜在有效方法了。该项目介绍了一种新颖的解决方案,以保护音频和视频数据流免受deepfake攻击。这个项目不是参与无休止的人工智能军备竞赛,以火灭火,新的机器学习算法不断使虚假的音频和视频变得更加真实的,而是根据一个关键的观察来解决这个具有挑战性的问题。每个音频或视频流都具有独特的环境指纹,例如在生成时嵌入的电网频率(ENF)信号。环境指纹是一种随机信号,具有唯一性、不可预测性和不可重复性。该项目将研究三种典型的应用场景:(1)准确检测互联网上上传的deepfaked AVS数据,如社交媒体帖子;(2)即时准确检测针对在线实时应用的虚假AVS注入攻击,如电话会议;以及(3)一个轻量级但强大的版本,适合视频物联网应用,如智能公共安全监控,这需要在网络边缘进行即时决策。此外,该项目将采用信息论方法更深入地了解环境指纹的特征。这项研究的成功将提供一种颠覆性的技术,使我们能够最终赢得与deepfake攻击的斗争。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fairledger: a Fair Proof-of-Sequential-Work based Lightweight Distributed Ledger for IoT Networks
Fairledger:基于公平顺序工作证明的物联网网络轻量级分布式账本
DeFakePro: Decentralized Deepfake Attacks Detection Using ENF Authentication
  • DOI:
    10.1109/mitp.2022.3172653
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
  • 通讯作者:
    Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
Detecting Compromised Edge Smart Cameras using Lightweight Environmental Fingerprint Consensus
使用轻量级环境指纹共识检测受损的边缘智能相机
Deterring Deepfake Attacks with an Electrical Network Frequency Fingerprints Approach
  • DOI:
    10.3390/fi14050125
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
  • 通讯作者:
    Deeraj Nagothu;Ronghua Xu;Yu Chen;E. Blasch;Alexander J. Aved
DEMA: decentralized electrical network frequency map for social media authentication
DEMA:用于社交媒体认证的去中心化电网频率图
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Chen其他文献

Sinomenine induces apoptosis of prostate cancer cells by blocking activation of NF-kappa B
青藤碱通过阻断 NF-κ B 的激活诱导前列腺癌细胞凋亡
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian Fan;Jian;Yu Chen;H. Fang;B. Lou;Jun;Lifen Zhu;X. Tong
  • 通讯作者:
    X. Tong
Facile Synthesis of Flower-Like AgI/BiOBr Z-Scheme Nanocomposite with Enhanced Photocatalytic Activity for Degradation of 17 alpha-Estradiol (EE2)
轻松合成花状 AgI/BiOBr Z 型纳米复合材料,具有增强的光催化活性,可降解 17 α-雌二醇 (EE2)
  • DOI:
    10.1142/s1793292019500073
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Lingxin Li;Han Li;Yanju Long;Shan Wang;Yu Chen;Sifeng Zhang;Lulu Wang;Lijun Luo;Fengzhi Jiang
  • 通讯作者:
    Fengzhi Jiang
Lattice Boltzmann modelling of the coupling between charge transport and electrochemical reactions in a solid oxide fuel cell with a patterned anode
具有图案阳极的固体氧化物燃料电池中电荷传输和电化学反应之间耦合的格子玻尔兹曼模型
  • DOI:
    10.1016/j.ijhydene.2019.09.086
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    Han Xu;Yu Chen;Jun Hyuk Kim;Zheng Dang;Meilin Liu
  • 通讯作者:
    Meilin Liu
A semi-analytical algorithm for deriving the particle size distribution slope of turbid inland water based on OLCI data: a case study in Lake Hongze
基于OLCI数据推导内陆浑浊水体粒径分布斜率的半解析算法——以洪泽湖为例
  • DOI:
    10.1016/j.envpol.2020.116288
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Shaohua Lei;Jie Xu;Yunmei Li;Lin Li;Heng Lyu;Ge Liu;Yu Chen
  • 通讯作者:
    Yu Chen
Evaluating emergency response capacity of chemical industrial park using hybrid fuzzy AHP method
混合模糊AHP法评价化工园区应急能力

Yu Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Chen', 18)}}的其他基金

Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
  • 批准号:
    2142783
  • 财政年份:
    2022
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
CAREER: Levelling the Playing Field in STEM: Post-transfer Success for Underrepresented Racial Minority Community College Transfers
职业:在 STEM 领域创造公平的竞争环境:少数族裔社区大学转学后取得成功
  • 批准号:
    2145520
  • 财政年份:
    2022
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHINE: Investigation of Mini-filament Eruptions and Their Relationship with Small Scale Magnetic Flux Ropes in Solar Wind
合作研究:SHINE:研究太阳风中的微型细丝喷发及其与小规模磁通量绳的关系
  • 批准号:
    2229065
  • 财政年份:
    2022
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
EAGER: SaTC: CORE: Small: Decentralized Data Assurance by Fair Proof of Work Consensus Federated Ledgers
EAGER:SaTC:核心:小型:通过公平工作证明共识联合账本实现去中心化数据保证
  • 批准号:
    2141468
  • 财政年份:
    2021
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Standardized Testing of Adult NIRS Oximetry Sensors using a Modular Phantom and Closed-loop Controlled Saturation System
使用模块化体模和闭环控制饱和系统对成人 NIRS 血氧传感器进行标准化测试
  • 批准号:
    1935845
  • 财政年份:
    2020
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Standardized Testing of Adult NIRS Oximetry Sensors using a Modular Phantom and Closed-loop Controlled Saturation System
使用模块化体模和闭环控制饱和系统对成人 NIRS 血氧传感器进行标准化测试
  • 批准号:
    2019254
  • 财政年份:
    2020
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
A new tool for rapid RNA detection in single cells
一种快速检测单细胞 RNA 的新工具
  • 批准号:
    BB/S018700/1
  • 财政年份:
    2019
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Research Grant
Standardized Performance Testing of Multispectral Reflectance Oximetry Imaging (MROI) in Emerging Device Platforms
新兴设备平台中多光谱反射血氧成像 (MROI) 的标准化性能测试
  • 批准号:
    1743660
  • 财政年份:
    2018
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
NSF/FDA Scholar In Residence: Quantitative Characterization of Near-infrared Fluorescence Molecular Imaging Systems: 3D-printed Biomimetic Phantoms and In vivo Validation
NSF/FDA 常驻学者:近红外荧光分子成像系统的定量表征:3D 打印的仿生体模和体内验证
  • 批准号:
    1641077
  • 财政年份:
    2017
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: 3D-printed Biomimetic Phantoms for Near-Infrared Spectroscopy System Performance Testing
NSF/FDA SIR:用于近红外光谱系统性能测试的 3D 打印仿生模型
  • 批准号:
    1542063
  • 财政年份:
    2016
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
  • 批准号:
    2348130
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
  • 批准号:
    2348304
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
  • 批准号:
    2348177
  • 财政年份:
    2024
  • 资助金额:
    $ 25.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了