Collective Behavior of Cellular Oscillators

细胞振荡器的集体行为

基本信息

项目摘要

Collective behavior can be observed in a variety of contexts and across biological scales, from the blinking of fireflies, the marching of locusts, the flocking of birds, down to the synchronized behavior of cells in tissues. Single cells have a biological clock, but their synchronized timekeeping is usually only observed at the level of tens of millions of cells. A grand challenge is understanding how cellular clocks in organisms, tissues, and cells become synchronized to keep time. Using a model fungal system, Neurospora crassa, investigators consider two principal theories on the emergence of clock synchronization: (1) through a shared biochemical signal between cellular clocks; (2) through the random switching of clock genes within a cell. In examining these two scientific theories, investigators explore the origin of the biological clock from a single cell perspective, which remains an open challenge since the Nobel Prize winning discoveries of Hall, Young, and Rosbash linking genes to circadian rhythms. As part of the Broader Impact activities investigators develop new projects in the area of biological clock research for two REU site programs in Genomics and Computational Biology and Nanotechnology and Biomedicine, which actively recruits students from Clark Atlanta University. The team will also organize and contribute to the Gordon Conference on Collective Behavior (GRC).In order to understand the synchronization of clocks between cells, there are several challenges that need to be addressed, including: (1) lack of working stochastic network models to describe populations of cellular clocks; (2) lack of a direct test for interrogating the biochemical signals as quorum sensing based synchronization mechanisms; (3) lack of knowledge on what signal(s) synchronize(s) cellular clocks; (4) lack of evidence to determine whether or not stochastic switching in clock genes plays a role in synchronization – the stochastic resonance (coherence) hypotheses; (5) lack of understanding how the clock functions at the predominant life stage of fungi, the filament. The goal of this work is to understand the synchronization of biological clocks between cells and filaments in N. crassa by two mechanisms, quorum sensing vs. Stochastic Resonance (Coherence). The interdisciplinary team will investigate mechanisms of collective behavior using: novel microfluidics platforms to measure phase synchronization of biological clocks on a controlled number of living N. crassa cells, methods from Statistical Physics to test quorum sensing versus Stochastic Resonance theoretical frameworks, and a newly developed Continuous in vivo metabolism-NMR (CIVM-NMR) method to identify and characterize signaling molecules that may be responsible for clock synchronization. The research-driven Broader Impact activities include: (1) Development of interdisciplinary research-centered course, Clock Collaboratorium; (2) Development of undergraduate research projects focused on the central theme of the biological clock, which will be deployed in two NSF REU site programs; and (3) Organization of a collective behavior community that will engage through a new Gordon Research Conference in Newport, RI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集体行为可以在各种环境和生物尺度上观察到,从萤火虫的眨眼,蝗虫的行军,鸟类的成群结队,到组织中细胞的同步行为。单个细胞有一个生物钟,但它们的同步计时通常只在数千万细胞的水平上被观察到。一个巨大的挑战是理解生物体、组织和细胞中的细胞时钟是如何同步以保持时间的。利用一种模型真菌系统——粗神经孢子虫,研究人员考虑了时钟同步出现的两种主要理论:(1)通过细胞时钟之间共享的生化信号;(2)通过细胞内时钟基因的随机切换。在研究这两种科学理论时,研究人员从单细胞的角度探索了生物钟的起源,自诺贝尔奖得主霍尔、杨和罗斯巴什发现基因与昼夜节律联系起来以来,这仍然是一个公开的挑战。作为“更广泛影响”活动的一部分,研究人员在基因组学和计算生物学以及纳米技术和生物医学两个REU站点项目中开发了生物钟研究领域的新项目,这些项目积极招募来自克拉克亚特兰大大学的学生。该团队还将组织并为戈登集体行为会议(GRC)做出贡献。为了理解细胞间时钟的同步,有几个挑战需要解决,包括:(1)缺乏工作的随机网络模型来描述细胞时钟群;(2)缺乏对生物化学信号作为群体感应同步机制的直接检验;(3)不知道什么信号能同步细胞时钟;(4)缺乏证据来确定时钟基因的随机开关是否在同步中起作用-随机共振(相干)假说;(5)缺乏对真菌的主要生命阶段——菌丝的生物钟功能的了解。本研究的目的是通过群体感应与随机共振(Coherence)两种机制来了解草属植物细胞和细丝之间的生物钟同步。跨学科团队将使用以下方法研究集体行为的机制:新的微流控平台,以测量控制数量的活N.草细胞上的生物钟相位同步,从统计物理学中测试群体感应与随机共振理论框架的方法,以及新开发的连续体内代谢核磁共振(CIVM-NMR)方法,以识别和表征可能负责时钟同步的信号分子。研究驱动的广泛影响活动包括:(1)以跨学科研究为中心的课程开发,时钟合作;(2)开展以生物钟为中心主题的本科研究项目,并将在2个NSF REU站点项目中部署;(3)组织一个集体行为社区,该社区将通过在罗德岛新港举行的新戈登研究会议参与。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MICROFLUIDIC CHAMBER DEVICE TO TEST QUORUM SENSING THEORY
用于测试群体感应理论的微流控室装置
Quorum sensing in single cells of Neurospora crassa
粗糙脉孢菌单细胞的群体感应
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiu, X.
  • 通讯作者:
    Qiu, X.
Measuring how clocks in single cells of Neurospora crassa communicate in microfluidic devices
测量粗糙脉孢菌单细胞中的时钟如何在微流体装置中通信
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheong, J. H.
  • 通讯作者:
    Cheong, J. H.
Ensemble Methods for Identifying RNA Operons and Regulons in the Clock Network of Neurospora Crassa
  • DOI:
    10.1109/access.2022.3160481
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Al-Omari,Ahmad M.;Griffith,James;Arnold,Jonathan
  • 通讯作者:
    Arnold,Jonathan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Arnold其他文献

Perceptions of Information Transferred in Review of Systems Forms: A Qualitative Description
  • DOI:
    10.1007/s11606-025-09443-4
  • 发表时间:
    2025-02-20
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Natalie C. Ernecoff;Jonathan Arnold;Tamar Krishnamurti;Hannah J. Porter;Polly McCracken;Clark Veet;Janel Hanmer
  • 通讯作者:
    Janel Hanmer
Short branch attraction in phylogenomic inference under the multispecies coalescent
多物种合并下系统发育学推断中的短枝吸引力
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    L. Liu;Lili Yu;Shaoyuan Wu;Jonathan Arnold;Christopher Whalen;C. Davis;S. Edwards
  • 通讯作者:
    S. Edwards
Comparison of the nucleotide sequence of soybean 18S rRNA with the sequences of other small-subunit rRNAs
  • DOI:
    10.1007/bf02102358
  • 发表时间:
    1985-04-01
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Virginia K. Eckenrode;Jonathan Arnold;Richard B. Meagher
  • 通讯作者:
    Richard B. Meagher
The Neurospora crassa genome: cosmid libraries sorted by chromosome.
粗糙脉孢菌基因组:按染色体排序的粘粒文库。
  • DOI:
    10.1093/genetics/157.3.979
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hemant S. Kelkar;James F. Griffith;Mary E. Case;S. Covert;Robert Davidson Hall;Charles H. Keith;J. Oliver;Marc J. Orbach;Matthew S. Sachs;Jeff R. Wagner;Michael J. Weise;John K. Wunderlich;Jonathan Arnold
  • 通讯作者:
    Jonathan Arnold
The lunar cycle's influence on sex determination at conception in humans
月球周期对人类受孕时性别决定的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derek Onken;E. Marty;R. Palomares;Rui Xie;Leyao Zhang;Jonathan Arnold;Juan B. Gutierrez
  • 通讯作者:
    Juan B. Gutierrez

Jonathan Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Arnold', 18)}}的其他基金

RAPID: finding virulence genes as therapeutic targets in Covid-19
RAPID:寻找毒力基因作为 Covid-19 的治疗靶点
  • 批准号:
    2029595
  • 财政年份:
    2020
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Standard Grant
Gordon Research Conference on Collective Behavior
戈登集体行为研究会议
  • 批准号:
    2026268
  • 财政年份:
    2020
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Standard Grant
Measuring and Modeling How Clocks in Single Cells Communicate: an interdisciplinary apporach
测量和建模单细胞中的时钟如何通信:跨学科方法
  • 批准号:
    1713746
  • 财政年份:
    2017
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Continuing Grant
REU Site: Collaborative Research: Genomics and Computational Biology
REU 网站:合作研究:基因组学和计算生物学
  • 批准号:
    1426834
  • 财政年份:
    2014
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Continuing Grant
REU Site: Genomics and Computational Biology
REU 网站:基因组学和计算生物学
  • 批准号:
    1062213
  • 财政年份:
    2011
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Continuing Grant
REU Site: Genomics and Computational Biology
REU 网站:基因组学和计算生物学
  • 批准号:
    0646315
  • 财政年份:
    2007
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Continuing Grant
QSB: Computing Life and the Kinetics of the Cell
QSB:计算细胞的生命和动力学
  • 批准号:
    0425762
  • 财政年份:
    2004
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Standard Grant
Genomics & Computational Biology: an REU Site
基因组学
  • 批准号:
    0243754
  • 财政年份:
    2003
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Continuing Grant
In vitro Reconstruction of Fungal Chromosomes
真菌染色体的体外重建
  • 批准号:
    9630910
  • 财政年份:
    1996
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Continuing Grant
Robotics System for Physical Mapping of Fungal Genomes
用于真菌基因组物理作图的机器人系统
  • 批准号:
    9512887
  • 财政年份:
    1996
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Standard Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Standard Grant
Understanding and rewiring cellular behavior with synthetic biology approaches
用合成生物学方法理解和重新连接细胞行为
  • 批准号:
    10662938
  • 财政年份:
    2023
  • 资助金额:
    $ 80.72万
  • 项目类别:
Molecular, Cellular, and Circuit Mechanisms of Nociception Behavior
伤害感受行为的分子、细胞和回路机制
  • 批准号:
    10552222
  • 财政年份:
    2023
  • 资助金额:
    $ 80.72万
  • 项目类别:
Regulation of Cellular Behavior in Response to Extracellular Cues
响应细胞外信号的细胞行为调节
  • 批准号:
    10853789
  • 财政年份:
    2023
  • 资助金额:
    $ 80.72万
  • 项目类别:
Regulation of Cellular Behavior in Response to Extracellular Cues
响应细胞外信号的细胞行为调节
  • 批准号:
    10557022
  • 财政年份:
    2023
  • 资助金额:
    $ 80.72万
  • 项目类别:
Research Initiation Award: Designing Synthetic Polyglycidol-based Polymeric Networks to Influence Cellular Behavior
研究启动奖:设计基于合成聚缩水甘油的聚合物网络以影响细胞行为
  • 批准号:
    2200484
  • 财政年份:
    2022
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Standard Grant
Cellular basis of complex social behavior
复杂社会行为的细胞基础
  • 批准号:
    10701800
  • 财政年份:
    2022
  • 资助金额:
    $ 80.72万
  • 项目类别:
CAREER: Diagnosing the Undiagnosable: Using Enzyme Upregulation to Probe Cellular Behavior in Neuropathic Lysosomal Storage Disease
职业:诊断无法诊断的疾病:利用酶上调来探测神经性溶酶体贮积病的细胞行为
  • 批准号:
    2047697
  • 财政年份:
    2021
  • 资助金额:
    $ 80.72万
  • 项目类别:
    Continuing Grant
Bridging cellular and systems neuroscience: synaptic dynamics underlying behavior
连接细胞和系统神经科学:行为背后的突触动力学
  • 批准号:
    10706612
  • 财政年份:
    2021
  • 资助金额:
    $ 80.72万
  • 项目类别:
Bridging cellular and systems neuroscience: synaptic dynamics underlying behavior
连接细胞和系统神经科学:行为背后的突触动力学
  • 批准号:
    10261731
  • 财政年份:
    2021
  • 资助金额:
    $ 80.72万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了