EAGER: A Novel Algorithmic Framework for Discovering Subnetworks from Big Biological Data

EAGER:一种从生物大数据中发现子网络的新颖算法框架

基本信息

  • 批准号:
    1451316
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

One of the commonly pursued objectives in big data analytics is to find interesting patterns from data. When the data is big and collected from an ensemble of underlying networks, such as molecular profiling data, inferring molecular subnetworks emerged as a promising solution to knowledge discovery from biological big data. A main barrier impeding the discovery is how to effectively use the massive and heterogeneous information from the data, e.g., how to integrate information from rows and columns of the data matrix to efficiently explore the complex space of possible subnetworks. A recent line of research (by the PI and others) has resulted in new algorithms being introduced to this area. Unfortunately, most of these algorithms are neither specifically designed for nor work well with biological big data. The main goal of this project is to develop tailor-made algorithms and software tools to obtain better discovery of subnetworks from ever-increasing biological big data. The broader significance and importance of this project fall into three main areas. First, the subnet algorithms and software tools developed in this proposal will have broad applicability for many scientific domains wherein subnetwork structures are usually desired; this encompasses disciplines ranging from biological, computational, medical and social sciences. The creation of an efficient and user-friendly software toolbox would further provide rich resources for training and educating students in these scientific domains, thereby helping to ensure national academic competitiveness. Second, the regularly scheduled outreach activities will provide an innovative learning model for educating students of all levels and the community at large. Finally, the under-represented groups, such as female and minority students, will be involved through targeted recruiting and information dissemination.Technically, a novel algorithmic framework, i.e., subnet, will be developed and implemented to discover subnetworks jointly from molecule abundance values and co-regulated molecule sets extracted from the same biological big data. The former correspond to the rows and the latter correspond to the column of the data matrix. Previous research has focused on either columns or rows but not on both simultaneously. A novel multi-criteria score-and-search paradigm will be introduced and a novel subnet algorithm will be developed and implemented to efficiently and reliably extract underlying subnetworks from biological big data. These techniques are transformative in that they are applicable to many other scientific areas where big data are "emitted" by the underlying networks. The algorithms and tools will be systematically evaluated on simulation data sets using standard measures.
大数据分析中普遍追求的目标之一是从数据中发现有趣的模式。当数据很大并且从底层网络集合(例如分子分析数据)收集时,推断分子子网络就成为从生物大数据中发现知识的一种有前景的解决方案。阻碍这一发现的主要障碍是如何有效地利用数据中的海量异构信息,例如如何整合数据矩阵的行和列的信息以有效地探索可能的子网络的复杂空间。最近的一系列研究(由 PI 和其他人进行)已将新算法引入该领域。不幸的是,大多数这些算法既不是专门为生物大数据设计的,也不能很好地处理生物大数据。该项目的主要目标是开发定制的算法和软件工具,以便从不断增加的生物大数据中更好地发现子网络。该项目的更广泛意义和重要性分为三个主要领域。首先,本提案中开发的子网算法和软件工具对于通常需要子网结构的许多科学领域具有广泛的适用性;这涵盖了生物、计算、医学和社会科学等学科。创建高效且用户友好的软件工具箱将进一步为这些科学领域的学生培训和教育提供丰富的资源,从而有助于确保国家学术竞争力。其次,定期安排的外展活动将为教育各级学生和整个社区提供创新的学习模式。最后,女性和少数族裔学生等弱势群体将通过有针对性的招募和信息传播来参与其中。技术上,将开发和实施一种新颖的算法框架,即子网,以从同一生物大数据中提取的分子丰度值和共同调控的分子集联合发现子网。前者对应于数据矩阵的行,后者对应于数据矩阵的列。以前的研究主要集中在列或行上,但没有同时关注两者。将引入一种新颖的多标准评分和搜索范式,并将开发和实施一种新颖的子网算法,以高效可靠地从生物大数据中提取底层子网。这些技术具有变革性,因为它们适用于由底层网络“发射”大数据的许多其他科学领域。将使用标准措施在模拟数据集上系统地评估算法和工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongxiao Zhu其他文献

"It's Not What We Were Trying to Get At, but I Think Maybe It Should Be": Learning How to Do Trauma-Informed Design with a Data Donation Platform for Online Dating Sexual Violence
“这不是我们想要达到的目标,但我认为也许应该如此”:学习如何利用在线约会性暴力的数据捐赠平台进行创伤知情设计
MFABA: A More Faithful and Accelerated Boundary-based Attribution Method for Deep Neural Networks
MFABA:一种更忠实、更加速的深度神经网络基于边界的归因方法
Towards Trauma-Informed Data Donation of Sexual Experience in Online Dating to Improve Sexual Risk Detection AI
致力于在线约会中性经历的创伤知情数据捐赠,以改进性风险检测人工智能
Benchmark and Neural Architecture for Conversational Entity Retrieval from a Knowledge Graph
从知识图进行会话实体检索的基准和神经架构
Mechanical evolution of metastatic cancer cells in three-dimensional microenvironment
三维微环境中转移癌细胞的机械演化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karlin Hilai;Daniil Grubich;Marcus Akrawi;Hui Zhu;Razanne Zaghloul;Chenjun Shi;Man Do;Dongxiao Zhu;Jitao Zhang
  • 通讯作者:
    Jitao Zhang

Dongxiao Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongxiao Zhu', 18)}}的其他基金

NSF Convergence Accelerator Track H: Leveraging Human-Centered AI Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment for Persons with Disabilities
NSF 融合加速器轨道 H:利用以人为本的人工智能微交通改善残疾人住房和就业之间的时空不匹配
  • 批准号:
    2235225
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Understanding Online-to-Offline Sexual Violence through Data Donation from Users
合作研究:HCC:小型:通过用户捐赠的数据了解线上线下性暴力
  • 批准号:
    2211897
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track A: Leveraging AI-assist Microtransit to Ameliorate Spatiotemporal Mismatch between Housing and Employment
SCC-CIVIC-PG Track A:利用人工智能辅助微交通改善住房和就业之间的时空错配
  • 批准号:
    2043611
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Algorithmic Fairness Tools for Reducing Health Disparities in Primary Care
用于减少初级保健健康差异的新颖算法公平工具
  • 批准号:
    10676234
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
Novel Algorithmic Fairness Tools for Reducing Health Disparities in Primary Care
用于减少初级保健健康差异的新颖算法公平工具
  • 批准号:
    10416957
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10367404
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10674548
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10267034
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10099785
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
Stakeholder Guidance to Anticipate and Address Ethical Challenges in Applications of Machine Learning and Artificial Intelligence in Algorithmic Medicine: a Novel Empirical Approach
利益相关者指导预测和解决机器学习和人工智能在算法医学中的应用中的伦理挑战:一种新颖的经验方法
  • 批准号:
    10455006
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
The Algorithmic Crimmigrant: How does the development and diffusion of novel surveillance and security technologies impact the global criminalization
算法犯罪移民:新型监控和安全技术的发展和传播如何影响全球犯罪化
  • 批准号:
    2261320
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Studentship
Novel Algorithmic Approaches & Machine Learning for Analysis of Musical Signals
新颖的算法方法
  • 批准号:
    2065238
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Studentship
CPS: Small: Novel Algorithmic Techniques for Drone Flight Planning on a Large Scale
CPS:小型:大规模无人机飞行规划的新颖算法技术
  • 批准号:
    1837779
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了