Integrating Content and Skills from the Humanities into Data Science Education

将人文学科的内容和技能融入数据科学教育

基本信息

  • 批准号:
    2044384
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to serve the national interest by improving data science education using a human-centered approach to teaching the foundations of data science. The purpose of this project is to understand the impact of efforts dedicated to broaden recruitment and retention in data science. This effort is particularly important for students coming from demographic groups that are currently underrepresented in data science. These future data scientists will need to analyze not just numbers, but their human contexts and consequences, to prevent intentional or unintentional misuse of data science, and to communicate results effectively. This project has been designed to test if these goals might be achieved by integrating content and skills from the humanities into data science education. A team-taught interdisciplinary approach will be used to create and deliver an introductory data science course for undergraduate students. The course will use real-world social issues to teach important statistics and coding skills alongside ways of thinking from the humanities. Examples of such thinking include analysis of the source of data and the harms and benefits of data collection and analysis. It also includes the rhetorical aims and strategies of those who use data in politics and policymaking. The effectiveness of the course in improving student learning will be assessed to determine how this education model can be improved, adapted, and ultimately implemented at other colleges and universities. This project has potential to craft a more inclusive and human-centered approach to teaching the foundations of data science. By developing a new collaborative model of data science education that can be adapted nationwide, this project aims to positively impact STEM education, leading to a more diverse, creative, and innovative national workforce and a more STEM-literate public.This project’s goal is to develop and assess new pedagogical approaches to collaboratively teaching data science that effectively incorporate perspectives of both STEM and humanities disciplines. The resulting introductory data science course will provide future data science and STEM majors with qualitative reasoning skills that are traditionally taught in the humanities, provide future humanities majors with an on-ramp to further study of data science, and provide all students with statistical and computational skills they can apply in future courses and in the workforce. This project will collect evidence to answer four research questions: (1) In what ways and to what degree does the humanities-focused introductory data science course change attitudes about STEM, data science, and the humanities? (2) How effective is the course in helping students achieve student learning outcomes in both data science and the humanities? (3) How effective is the proposed peer assessment system? (4) To what extent does the project increase the recruitment and retention of diverse students in data science, STEM, and the humanities? These questions will be addressed using surveys of students’ attitudes toward STEM and the humanities, assessments of student learning outcomes from an interdisciplinary data science course, the development and evaluation of a peer assessment program, multiple assessments of teaching effectiveness, and a longitudinal study of student pathways and performance. Ultimately, the answers to these questions will provide insights on how to educate more data scientists, improve student learning, and provide non-scientists with the ability to understand and interpret foundational concepts in data science. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过使用以人为本的方法来教授数据科学的基础来改善数据科学教育,从而为国家利益服务。该项目的目的是了解致力于扩大数据科学招聘和保留的努力的影响。这一努力对于来自目前在数据科学领域代表性不足的人口群体的学生尤为重要。这些未来的数据科学家不仅需要分析数字,还需要分析它们的人类背景和后果,以防止有意或无意地滥用数据科学,并有效地传达结果。该项目旨在测试这些目标是否可以通过将人文学科的内容和技能整合到数据科学教育中来实现。团队授课的跨学科方法将用于为本科生创建和提供数据科学入门课程。该课程将使用现实世界的社会问题来教授重要的统计和编码技能,以及人文学科的思维方式。这种思维的例子包括对数据来源的分析以及数据收集和分析的利弊。它还包括那些在政治和决策中使用数据的人的修辞目的和策略。该课程在提高学生学习的有效性将进行评估,以确定如何改进,调整,并最终在其他学院和大学实施这种教育模式。该项目有可能制定一种更具包容性和以人为本的方法来教授数据科学的基础。该项目旨在通过开发一种可在全国范围内适用的数据科学教育的新合作模式,积极影响STEM教育,从而形成更多样化、更具创造力和创新性的国家劳动力,以及更懂STEM的公众。该项目的目标是开发和评估新的教学方法,以有效地结合STEM和人文学科的观点来合作教授数据科学。由此产生的数据科学入门课程将为未来的数据科学和STEM专业提供传统上在人文学科中教授的定性推理技能,为未来的人文学科专业提供进一步学习数据科学的入口,并为所有学生提供统计和计算技能,他们可以在未来的课程和劳动力中应用。该项目将收集证据来回答四个研究问题:(1)以人文为中心的数据科学入门课程以何种方式以及在何种程度上改变了人们对STEM,数据科学和人文的态度?(2)该课程在帮助学生实现数据科学和人文学科的学生学习成果方面有多有效?(3)拟议的同行评估制度的有效性如何?(4)该项目在多大程度上增加了数据科学,STEM和人文学科的多元化学生的招聘和保留?这些问题将通过调查学生对STEM和人文学科的态度,跨学科数据科学课程的学生学习成果评估,同行评估计划的开发和评估,教学效果的多重评估以及学生途径和表现的纵向研究来解决。最终,这些问题的答案将提供有关如何教育更多数据科学家,改善学生学习,并为非科学家提供理解和解释数据科学基本概念的能力的见解。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Team-Based Learning to Teach Data Science
使用基于团队的学习来教授数据科学
INTEGRATING THE HUMANITIES INTO DATA SCIENCE EDUCATION
将人文学科融入数据科学教育
  • DOI:
    10.52041/serj.v21i2.42
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    VANCE, ERIC A.;GLIMP, DAVID R.;PIEPLOW, NATHAN D.;GARRITY, JANE M.;MELBOURNE, BRETT A.
  • 通讯作者:
    MELBOURNE, BRETT A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Vance其他文献

Loblolly pine (<em>Pinus taeda</em> L.) productivity 23 years after wet site harvesting and site preparation in the lower Atlantic coastal plain
  • DOI:
    10.1016/j.foreco.2017.07.007
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Charles M. Neaves;W. Michael Aust;M. Chad Bolding;Scott M. Barrett;Carl C. Trettin;Eric Vance
  • 通讯作者:
    Eric Vance
Soil properties in site prepared loblolly pine (<em>Pinus taeda</em> L.) stands 25 years after wet weather harvesting in the lower Atlantic coastal plain
  • DOI:
    10.1016/j.foreco.2017.08.015
  • 发表时间:
    2017-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Charles M. Neaves;W. Michael Aust;M. Chad Bolding;Scott M. Barrett;Carl C. Trettin;Eric Vance
  • 通讯作者:
    Eric Vance
Achieving Conservation Goals in Managed Forests of the Southeastern Coastal Plain
  • DOI:
    10.1007/s00267-009-9389-2
  • 发表时间:
    2009-10-24
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Craig Loehle;T. Bently Wigley;Erik Schilling;Vickie Tatum;John Beebe;Eric Vance;Paul Van Deusen;Philip Weatherford
  • 通讯作者:
    Philip Weatherford

Eric Vance的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Vance', 18)}}的其他基金

IGE: Transforming the Education and Training of Interdisciplinary Data Scientists (TETRIDS)
IGE:转变跨学科数据科学家的教育和培训 (TETRIDS)
  • 批准号:
    1955109
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
  • 批准号:
    24K00093
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An innovative, AI-driven application that helps users assess/action information pollution for social media content.
一款创新的人工智能驱动应用程序,可帮助用户评估/消除社交媒体内容的信息污染。
  • 批准号:
    10100049
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
CAREER: Optoelectronic lab-on-a-chip technology for high content automated multiparametric physiological analyses of live cells
职业:用于活细胞高内涵自动化多参数生理分析的光电芯片实验室技术
  • 批准号:
    2339030
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasma based process (RESTORE)
可持续再制造解决方案,在基于激光和等离子的工艺中提高自动化程度和回收内容(RESTORE)
  • 批准号:
    10112149
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Postdoctoral Fellowship: STEMEdIPRF: Pedagogical Content Knowledge for Course-based Undergraduate Research Instruction
博士后奖学金:STEMEdIPRF:基于课程的本科生研究教学的教学内容知识
  • 批准号:
    2327187
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RESTORE Sustainable Remanufacturing solution with increased automation and recycled content in laser and plasmabased process.
RESTORE 可持续再制造解决方案,在激光和等离子工艺中提高自动化程度和回收内容。
  • 批准号:
    10109638
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
WITHIN TOUCHING DISTANCE brings together artistic & technological innovation to explore how arts-based therapeutic content can be combined with XR.
触手可及的距离汇聚了艺术
  • 批准号:
    ES/Y011082/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Imaging/High content screening system
成像/高内涵筛选系统
  • 批准号:
    520854718
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Major Research Instrumentation
OpenAI API Lesson content generator with localised careers signposting
具有本地化职业路标的 OpenAI API 课程内容生成器
  • 批准号:
    10082614
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Using AR and AI-driven analytics to personalise wellbeing content in a social board game context
使用 AR 和 AI 驱动的分析在社交棋盘游戏环境中个性化健康内容
  • 批准号:
    10056428
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了