CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
基本信息
- 批准号:2045948
- 负责人:
- 金额:$ 55.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Like many other deep learning techniques, deep reinforcement learning is vulnerable to adversarial attacks. In reinforcement learning, an adversarial attack manipulates a reinforcement learning agent's sensory observation, flummoxing it. Recently, research has demonstrated that an adversarial attack could be even more practical. Instead of implicitly assuming an attacker has the full control to influence an agent's sensory system, the new type of attack presents an adversarial agent to manipulate the target agent's environment and thus trigger it to react in an undesired fashion. Compared with the kind of attack that alters the sensory observation, the new attack is more difficult to counteract. First, the methods (e.g., adversarial training) commonly used for robustifying other deep learning techniques are no longer suitable for deep reinforcement learning. Second, given a reinforcement learning agent, there are few technical approaches to scrutinizing the agent and unveiling its flaws. This project intends to address these two significant problems by integrating and expanding upon a series of technical approaches used in explainable AI, adversarial training, and formal verification in conjunction with program synthesis. The basic idea is first to learn an adversarial agent informed by explainable AI. Using this learned agent, we then unveil the weakness of target agents and adversarially train them accordingly. Through a robustness check, we evaluate the enhanced agents. If a strengthened agent fails the adversary-resistance check, we fall back on formal verification and program synthesis techniques. Using this unified solution, reinforcement learning model developers could identify the policy flaws of reinforcement learning agents and effectively remediate their weaknesses. This project will provide a stack of technical solutions to scrutinizing and robustifying deep reinforcement learning. If successful, the project will significantly advance the field of AI security (for adversarial training and adversarial policy learning) and contribute to the field of machine learning (for explainable AI and verified AI). Besides, this project has the potential to improve the security of reinforcement learning applications significantly.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与许多其他深度学习技术一样,深度强化学习很容易受到对抗性攻击。在强化学习中,对抗性攻击操纵强化学习代理的感官观察,使其陷入混乱。最近,研究表明,对抗性攻击可能更加实用。新类型的攻击不再隐含地假设攻击者有完全的控制权来影响智能体的感官系统,而是呈现一个对抗的智能体来操纵目标智能体的环境,从而触发它以一种不希望的方式做出反应。与改变感官观察的那种攻击相比,新的攻击更难以抵消。首先,通常用于增强其他深度学习技术的方法(例如,对抗性训练)不再适合深度强化学习。其次,给定一个强化学习代理,很少有技术方法来仔细检查代理并揭示其缺陷。这个项目打算通过整合和扩展一系列技术方法来解决这两个重要的问题,这些技术方法用于可解释的人工智能、对抗性训练,以及与程序合成相结合的正式验证。基本的想法是首先学习一个由可解释的AI告知的对抗性代理。使用这个学习代理,我们揭示目标代理的弱点,并相应地对抗性训练它们。通过鲁棒性检查,我们评估了增强代理。如果强化代理未能通过对抗性检查,我们就会求助于形式验证和程序合成技术。使用这个统一的解决方案,强化学习模型开发人员可以识别强化学习代理的策略缺陷,并有效地弥补它们的弱点。该项目将提供一套技术解决方案,以审查和增强深度强化学习。如果成功,该项目将显著推进人工智能安全领域(对抗性训练和对抗性政策学习),并为机器学习领域(可解释的人工智能和经过验证的人工智能)做出贡献。此外,该项目具有显著提高强化学习应用安全性的潜力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinyu Xing其他文献
Scalable misbehavior detection in online video chat services
在线视频聊天服务中可扩展的不当行为检测
- DOI:
10.1145/2339530.2339619 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xinyu Xing;Yu;Sui Huang;Hanqiang Cheng;Richard O. Han;Q. Lv;Xue Liu;Shivakant Mishra;Yi Zhu - 通讯作者:
Yi Zhu
A Novel Two-Step Decision Algorithm Using LOF and One Class SVM for Improving the Detection Accuracy of CSRR Electromagnetic Liveness Detection Sensors against High-Level Fingerprint Spoof Attacks
一种使用 LOF 和一类 SVM 的新型两步决策算法,提高 CSRR 电磁活体检测传感器针对高级指纹欺骗攻击的检测精度
- DOI:
10.14923/transcomj.2021app0007 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xiaofei Xie;Wenbo Guo;Lei Ma;Wei Le;Jian Wang;Lingjun Zhou;Yang Liu;Xinyu Xing;水山 桂乃 前田 忠彦 - 通讯作者:
水山 桂乃 前田 忠彦
UCognito: Private Browsing without Tears
UCognito:无泪私密浏览
- DOI:
10.1145/2810103.2813716 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Meng Xu;Yeongjin Jang;Xinyu Xing;Taesoo Kim;Wenke Lee - 通讯作者:
Wenke Lee
CGRED: class guided random early discarding
CGRED:类别引导随机早期丢弃
- DOI:
10.1109/pccc.2004.1394975 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Yuchun Guo;Yongxiang Zhao;Guangnong Song;Xinyu Xing;Changjia Chen - 通讯作者:
Changjia Chen
Using Non-invertible Data Transformations to Build Adversarial-Robust Neural Networks
使用不可逆数据转换构建对抗性鲁棒神经网络
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qinglong Wang;Wenbo Guo;Alexander Ororbia;Xinyu Xing;Lin Lin;C. Lee Giles;Xue Liu;Peng Liu;Gang Xiong - 通讯作者:
Gang Xiong
Xinyu Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinyu Xing', 18)}}的其他基金
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
- 批准号:
2225234 - 财政年份:2021
- 资助金额:
$ 55.45万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
- 批准号:
2219379 - 财政年份:2021
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
- 批准号:
2221122 - 财政年份:2021
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
- 批准号:
2225225 - 财政年份:2021
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
- 批准号:
2055320 - 财政年份:2021
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
- 批准号:
1954466 - 财政年份:2020
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
- 批准号:
1718459 - 财政年份:2017
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
相似海外基金
Securing the Future: Inclusive Cybersecurity Education for All
确保未来:全民包容性网络安全教育
- 批准号:
2350448 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
CAREER: Securing Next-Generation Transportation Infrastructure: A Traffic Engineering Perspective
职业:保护下一代交通基础设施:交通工程视角
- 批准号:
2339753 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant
Ownership-based Alias Analysis for Securing Unsafe Rust Programs
用于保护不安全 Rust 程序的基于所有权的别名分析
- 批准号:
DP240103194 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Discovery Projects
CAREER: Securing Off-premise Digital Services in the Presence of Strategic Incentives
职业:在战略激励的情况下确保场外数字服务的安全
- 批准号:
2337338 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Continuing Grant
CAREER: Securing the Future of Electric Field Measurements in Space Physics
职业:确保空间物理电场测量的未来
- 批准号:
2338825 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Continuing Grant
CAREER: Securing and Evolving Internet Security Protocols for Naming and Routing
职业:保护和发展用于命名和路由的互联网安全协议
- 批准号:
2339378 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Continuing Grant
Securing Convergent Ultra-large Scale Infrastructures
确保融合超大规模基础设施的安全
- 批准号:
EP/Z531315/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
DHSC Securing Better Health - Economics and/or Social Research Fellowship
DHSC 确保更好的健康 - 经济学和/或社会研究奖学金
- 批准号:
ES/Y003926/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Fellowship
Securing Transparency And Reproducibility in studies of Nutritional interventions (STAR-Nut)
确保营养干预研究的透明度和可重复性 (STAR-Nut)
- 批准号:
MR/Z503824/1 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Research Grant
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
- 批准号:
2422863 - 财政年份:2024
- 资助金额:
$ 55.45万 - 项目类别:
Standard Grant