Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses

协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御

基本信息

  • 批准号:
    2055320
  • 负责人:
  • 金额:
    $ 24.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

This project aims to harden machine learning based security defenses by improving their ability to handle dynamic changes. From data breaches to ransomware infections, the increasingly sophisticated attacks are posing a serious threat to Internet-enabled systems and their users. While machine learning has shown great promise to build the next generation of defense, these defense systems are vulnerable to the dynamic changes (or concept drift) in the data caused by attacker evolvement and behavior changes of benign players. Traditionally, detecting and mitigating the impact of concept drift requires significant efforts to label new data, which is challenging to scale up. In this project, the team of researchers will design novel schemes to improve the adaptability and resilience of learning-based defenses that require minimal labeling capacity. The core idea is to use self-supervised learning models, utilizing unlabeled data and obtaining supervision from the data itself. If successful, the project will provide the much-needed tools to measure, detect, and mitigate concept drift for security applications, including malware analysis, network intrusion detection, and bot detection.The team of researchers will first focus on measuring concept drift over longitudinal data. With a focus on real-world malware samples, the team will develop measurement tools to extract and characterize different types of concept drift to understand their patterns. In the next stage, the team will develop reactive methods to detect drifting samples via contrastive learning (a form of self-supervision), and methods to select drifting samples to facilitate efficient labeling. Finally, the team will move from reactive defense to proactive approaches. The plan is to use adversarial generative models (another form of self-supervision) to synthesize richer data and labels that mimic future mutations of attackers, which will be used to harden the defenses at the training stage. The proposed techniques are expected to reduce the data labeling costs for learning-based defenses and improve their long-term sustainability to protect users, organizations, and critical infrastructures. The team will also leverage this project to recruit and mentor underrepresented students, develop new course materials, and perform technology transfer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过提高基于机器学习的安全防御系统处理动态变化的能力来加强其安全性。从数据泄露到勒索软件感染,日益复杂的攻击对互联网系统及其用户构成了严重威胁。虽然机器学习在构建下一代防御方面表现出了巨大的潜力,但这些防御系统容易受到攻击者演变和良性参与者行为变化引起的数据动态变化(或概念漂移)的影响。传统上,检测和减轻概念漂移的影响需要大量的工作来标记新数据,这对扩大规模具有挑战性。在这个项目中,研究人员团队将设计新的方案,以提高基于学习的防御的适应性和弹性,这些防御需要最小的标记能力。其核心思想是使用自监督学习模型,利用未标记的数据并从数据本身获得监督。如果成功,该项目将提供急需的工具来测量,检测和减轻安全应用程序的概念漂移,包括恶意软件分析,网络入侵检测和机器人检测。研究人员团队将首先专注于测量纵向数据的概念漂移。该团队将专注于真实世界的恶意软件样本,开发测量工具来提取和表征不同类型的概念漂移,以了解它们的模式。在下一阶段,该团队将开发通过对比学习(一种自我监督的形式)检测漂移样本的反应性方法,以及选择漂移样本以促进有效标记的方法。最后,团队将从被动防御转向主动防御。该计划是使用对抗生成模型(另一种形式的自我监督)来合成更丰富的数据和标签,以模拟攻击者未来的突变,这些数据和标签将用于在训练阶段加强防御。预计这些技术将降低基于学习的防御的数据标签成本,并提高其长期可持续性,以保护用户,组织和关键基础设施。该团队还将利用这个项目来招募和指导代表性不足的学生,开发新的课程材料,并进行技术转让。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinyu Xing其他文献

Scalable misbehavior detection in online video chat services
在线视频聊天服务中可扩展的不当行为检测
  • DOI:
    10.1145/2339530.2339619
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyu Xing;Yu;Sui Huang;Hanqiang Cheng;Richard O. Han;Q. Lv;Xue Liu;Shivakant Mishra;Yi Zhu
  • 通讯作者:
    Yi Zhu
A Novel Two-Step Decision Algorithm Using LOF and One Class SVM for Improving the Detection Accuracy of CSRR Electromagnetic Liveness Detection Sensors against High-Level Fingerprint Spoof Attacks
一种使用 LOF 和一类 SVM 的新型两步决策算法,提高 CSRR 电磁活体检测传感器针对高级指纹欺骗攻击的检测精度
  • DOI:
    10.14923/transcomj.2021app0007
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaofei Xie;Wenbo Guo;Lei Ma;Wei Le;Jian Wang;Lingjun Zhou;Yang Liu;Xinyu Xing;水山 桂乃 前田 忠彦
  • 通讯作者:
    水山 桂乃 前田 忠彦
UCognito: Private Browsing without Tears
UCognito:无泪私密浏览
CGRED: class guided random early discarding
CGRED:类别引导随机早期丢弃
Using Non-invertible Data Transformations to Build Adversarial-Robust Neural Networks
使用不可逆数据转换构建对抗性鲁棒神经网络
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qinglong Wang;Wenbo Guo;Alexander Ororbia;Xinyu Xing;Lin Lin;C. Lee Giles;Xue Liu;Peng Liu;Gang Xiong
  • 通讯作者:
    Gang Xiong

Xinyu Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinyu Xing', 18)}}的其他基金

CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
  • 批准号:
    2225234
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
  • 批准号:
    2219379
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
  • 批准号:
    2045948
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
  • 批准号:
    2221122
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
  • 批准号:
    2225225
  • 财政年份:
    2021
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
  • 批准号:
    1954466
  • 财政年份:
    2020
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
  • 批准号:
    1718459
  • 财政年份:
    2017
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 24.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了