SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
基本信息
- 批准号:2221122
- 负责人:
- 金额:$ 32.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-15 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The kernel is the core piece of software in a computer's operating system. Due to the high complexity of kernel software, finding all vulnerabilities during the development phase is nearly impossible. In recent years, crowdsourcing efforts have shown great success in discovering kernel vulnerabilities, where security professionals, hackers, and users can all contribute by submitting kernel bug reports. However, research shows that many vulnerability reports, including those generated by automated tools (e.g., kernel fuzzers), are not easily reproducible. Non-reproducible reports can cause significant delays to the patching process or lead kernel vendors to misjudge the severity of the vulnerability. Preliminary research shows vulnerability reports are not reproducible due to 1) missing information on the compilation configuration; (2) a lack of data to construct the contexts for triggering the bug; and (3) inaccurate or incomplete information about the vulnerable kernel versions. This project will develop new approaches combining crowd-reported and machine-generated data and static-dynamic program analysis to automate the process of inferring, constructing, and validating the needed information for kernel-vulnerability reproduction.This project will provide much-needed automation for reproducing kernel bugs and vulnerabilities. If successful, the project will significantly advance computer security (for kernel vulnerability analysis) and contribute to the field of software engineering (for bug diagnosis and assessment). By improving the reproduction rate of kernel bugs, this project will also help with other parallel efforts for vulnerability patching and remediation. The expected advancements are three-fold. (1) The team will develop novel inference methods to infer the kernel compilation configuration based on memory snapshots and code segments in the bug reports. It will design new approaches to handle the untrusted or corrupted memory dumps caused by the bugs. (2) Team members will develop new mechanisms to construct precise triggering contexts to trigger the reported bugs (via kernel fault manipulation and injection). The context construction method is also able to pinpoint relevant faulty processes and handle kernel interrupt correctly. (3) New fuzzing tools will be designed to migrate input programs to enable much broader bug testing across kernel versions, and new methods to quickly determine non-vulnerable versions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
内核是计算机操作系统中软件的核心部分。由于内核软件的高度复杂性,在开发阶段找到所有漏洞几乎是不可能的。近年来,众包工作在发现内核漏洞方面取得了巨大成功,安全专业人员,黑客和用户都可以通过提交内核错误报告做出贡献。然而,研究表明,许多漏洞报告,包括由自动化工具(例如,核模糊器)不容易再现。不可复制的报告可能会导致修补过程的显著延迟,或导致内核供应商误判漏洞的严重性。初步研究表明,漏洞报告是不可复制的,原因是:(1)缺少有关编译配置的信息;(2)缺乏用于构建触发错误的上下文的数据;以及(3)有关易受攻击的内核版本的信息不准确或不完整。该项目将开发新的方法,将群众报告和机器生成的数据与静态-动态程序分析相结合,以自动化推断,构建和验证内核漏洞复制所需的信息。该项目将为复制内核错误和漏洞提供急需的自动化。如果成功,该项目将大大推进计算机安全(内核漏洞分析),并有助于软件工程领域(错误诊断和评估)。通过提高内核错误的再现率,该项目还将有助于其他并行的漏洞修补和修复工作。预期的进步有三倍。(1)该团队将开发新的推理方法,根据内存快照和错误报告中的代码段来推断内核编译配置。它将设计新的方法来处理由错误引起的不可信或损坏的内存转储。(2)团队成员将开发新的机制来构建精确的触发上下文,以触发报告的错误(通过内核故障操作和注入)。上下文构造方法还能准确定位相关的故障进程,并正确处理内核中断。(3)新的模糊测试工具将被设计用于移植输入程序,以实现跨内核版本的更广泛的错误测试,以及快速确定非易受攻击版本的新方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xinyu Xing其他文献
Scalable misbehavior detection in online video chat services
在线视频聊天服务中可扩展的不当行为检测
- DOI:
10.1145/2339530.2339619 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xinyu Xing;Yu;Sui Huang;Hanqiang Cheng;Richard O. Han;Q. Lv;Xue Liu;Shivakant Mishra;Yi Zhu - 通讯作者:
Yi Zhu
A Novel Two-Step Decision Algorithm Using LOF and One Class SVM for Improving the Detection Accuracy of CSRR Electromagnetic Liveness Detection Sensors against High-Level Fingerprint Spoof Attacks
一种使用 LOF 和一类 SVM 的新型两步决策算法,提高 CSRR 电磁活体检测传感器针对高级指纹欺骗攻击的检测精度
- DOI:
10.14923/transcomj.2021app0007 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xiaofei Xie;Wenbo Guo;Lei Ma;Wei Le;Jian Wang;Lingjun Zhou;Yang Liu;Xinyu Xing;水山 桂乃 前田 忠彦 - 通讯作者:
水山 桂乃 前田 忠彦
UCognito: Private Browsing without Tears
UCognito:无泪私密浏览
- DOI:
10.1145/2810103.2813716 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Meng Xu;Yeongjin Jang;Xinyu Xing;Taesoo Kim;Wenke Lee - 通讯作者:
Wenke Lee
CGRED: class guided random early discarding
CGRED:类别引导随机早期丢弃
- DOI:
10.1109/pccc.2004.1394975 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Yuchun Guo;Yongxiang Zhao;Guangnong Song;Xinyu Xing;Changjia Chen - 通讯作者:
Changjia Chen
Using Non-invertible Data Transformations to Build Adversarial-Robust Neural Networks
使用不可逆数据转换构建对抗性鲁棒神经网络
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qinglong Wang;Wenbo Guo;Alexander Ororbia;Xinyu Xing;Lin Lin;C. Lee Giles;Xue Liu;Peng Liu;Gang Xiong - 通讯作者:
Gang Xiong
Xinyu Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xinyu Xing', 18)}}的其他基金
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
- 批准号:
2225234 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
- 批准号:
2219379 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
- 批准号:
2045948 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
- 批准号:
2225225 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
- 批准号:
2055320 - 财政年份:2021
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
- 批准号:
1954466 - 财政年份:2020
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
- 批准号:
1718459 - 财政年份:2017
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Study, Detection and Containment of Influence Campaigns
SaTC:核心:小型:影响力活动的研究、检测和遏制
- 批准号:
2321649 - 财政年份:2023
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Socio-Technical Approaches for Securing Cyber-Physical Systems from False Claim Attacks
SaTC:核心:小型:保护网络物理系统免受虚假声明攻击的社会技术方法
- 批准号:
2310470 - 财政年份:2023
- 资助金额:
$ 32.13万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 32.13万 - 项目类别:
Continuing Grant