CAREER: A Quantitative Framework for Analyzing and Mitigating Microarchitectural Side Channels
职业:分析和缓解微架构侧通道的定量框架
基本信息
- 批准号:2046359
- 负责人:
- 金额:$ 51.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microarchitectural side-channel attacks that breach processor security and broadly affect computer systems have become one of the major security threats. Those attacks exploit the fact that software, when executing on modern processors, leaves traces on microarchitecture structures, and the traces can reveal private user information. Current defenses against microarchitectural side-channel attacks aim to reduce information leakage but unavoidably incur performance overhead, because they lose the capability of fully exploiting performance optimizations in computing systems. This project will develop a toolset to enable productive trade-offs between security and performance in mitigating microarchitectural side-channel attacks.The project tackles fundamental research problems in designing, evaluating, and using channel obfuscation techniques. The technical approach is to frame microarchitectural side channels, a computer architecture security problem, as a communication problem, and constructs quantitative channel models for microarchitectural structures. The first project thrust constructs the quantitative channel models, characterizing and quantifying the impacts of complex hardware events. The second thrust uses the channel models to measure the information leakage of the applications running on obfuscated architectures. The third thrust explores co-design channel obfuscation techniques with existing mitigation and detection solutions.The project will develop a toolset to mitigate microarchitectural side-channel attacks efficiently. The toolset can benefit a wide range of people who design, manage, and use computing systems, including computer architects, system administrators, and software developers. In addition, this project will initiate an effort on course offerings in the area of hardware security at Massachusetts of Technology. This project will also offer research opportunities to undergraduate students and under-represented minorities. This project will store all publications, code, and data-sets on public-facing websites, hosted at Massachusetts of Technology for at least 3 years after the end of the project. This information will be made available via commercial websites. Links to these websites will be mirrored at http://people.csail.mit.edu/mengjia/projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微体系结构侧信道攻击破坏处理器的安全性,广泛影响计算机系统,已成为主要的安全威胁之一。这些攻击利用了这样一个事实,即软件在现代处理器上运行时,会在微架构结构上留下痕迹,而这些痕迹可能会泄露私人用户信息。当前针对微架构侧通道攻击的防御旨在减少信息泄漏,但不可避免地会带来性能开销,因为它们失去了在计算系统中充分利用性能优化的能力。该项目将开发一个工具集,以便在安全性和性能之间进行有效的权衡,以减轻微架构侧信道攻击。该项目解决了设计、评估和使用信道混淆技术的基本研究问题。技术方法是将微体系结构侧信道(计算机体系结构安全问题)作为通信问题,并构建微体系结构的定量信道模型。第一个项目推力构建了定量渠道模型,描述和量化了复杂硬件事件的影响。第二个要点使用通道模型来度量运行在模糊体系结构上的应用程序的信息泄漏。第三个重点探讨了现有缓解和检测解决方案的共同设计通道混淆技术。该项目将开发一个工具集来有效地减轻微架构侧信道攻击。该工具集可以使设计、管理和使用计算系统的广泛人员受益,包括计算机架构师、系统管理员和软件开发人员。此外,该项目还将启动麻省理工学院硬件安全领域的课程设置。该项目还将为本科生和少数族裔提供研究机会。该项目将在面向公众的网站上存储所有出版物、代码和数据集,在项目结束后的至少3年内托管在麻省理工学院。这些信息将通过商业网站提供。这些网站的链接将在http://people.csail.mit.edu/mengjia/projects.This上得到反映,该奖项反映了美国国家科学基金会的法定使命,并通过基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EntryBleed: A Universal KASLR Bypass against KPTI on Linux
- DOI:10.1145/3623652.3623669
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:William Liu;Joseph Ravichandran;Mengjia Yan
- 通讯作者:William Liu;Joseph Ravichandran;Mengjia Yan
Pensieve: Microarchitectural Modeling for Security Evaluation
Pensieve:用于安全评估的微架构建模
- DOI:10.1145/3579371.3589094
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yang, Yuheng;Bourgeat, Thomas;Lau, Stella;Yan, Mengjia
- 通讯作者:Yan, Mengjia
Metior: A Comprehensive Model to Evaluate Obfuscating Side-Channel Defense Schemes
Metior:评估混淆侧通道防御方案的综合模型
- DOI:10.1145/3579371.3589073
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Deutsch, Peter W.;Na, Weon Taek;Bourgeat, Thomas;Emer, Joel S.;Yan, Mengjia
- 通讯作者:Yan, Mengjia
There’s Always a Bigger Fish: A Clarifying Analysis of a Machine-Learning-Assisted Side-Channel Attack
总有更大的鱼:机器学习辅助侧通道攻击的澄清分析
- DOI:10.1109/mm.2023.3273457
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Cook, Jack;Drean, Jules;Behrens, Jonathan;Yan, Mengjia
- 通讯作者:Yan, Mengjia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mengjia Yan其他文献
SpecTaint: Speculative Taint Analysis for Discovering Spectre Gadgets
SpecTaint:用于发现 Spectre 小工具的推测性污点分析
- DOI:
10.14722/ndss.2021.24466 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhenxiao Qi;Qian Feng;Yueqiang Cheng;Mengjia Yan;Peng Li;Heng Yin;Tao Wei - 通讯作者:
Tao Wei
Video anomaly detection using unsupervised deep learning methods
- DOI:
10.32657/10220/46011 - 发表时间:
2018-09 - 期刊:
- 影响因子:0
- 作者:
Mengjia Yan - 通讯作者:
Mengjia Yan
Speculation Invariance (InvarSpec): Faster Safe Execution Through Program Analysis
推测不变性 (InvarSpec):通过程序分析加快安全执行速度
- DOI:
10.1109/micro50266.2020.00094 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zirui Neil Zhao;Houxiang Ji;Mengjia Yan;Jiyong Yu;Christopher W. Fletcher;Adam Morrison;D. Marinov;J. Torrellas - 通讯作者:
J. Torrellas
DAGguise: mitigating memory timing side channels
DAGguise:减少内存时序侧通道
- DOI:
10.1145/3503222.3507747 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Peter W. Deutsch;Yuheng Yang;Thomas Bourgeat;Jules Drean;J. Emer;Mengjia Yan - 通讯作者:
Mengjia Yan
High-throughput multiplexed tandem repeat genotyping using targeted long-read sequencing
使用靶向长读长测序进行高通量多重串联重复基因分型
- DOI:
10.1101/673251 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
D. Ganesamoorthy;Mengjia Yan;V. Murigneux;Chenxi Zhou;Minh Duc Cao;T. Duarte;L. Coin - 通讯作者:
L. Coin
Mengjia Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
A quantitative risk framework to assess the impact of climate change on coal tip stability.
评估气候变化对煤尖稳定性影响的定量风险框架。
- 批准号:
2884324 - 财政年份:2023
- 资助金额:
$ 51.2万 - 项目类别:
Studentship
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
- 批准号:
2309491 - 财政年份:2023
- 资助金额:
$ 51.2万 - 项目类别:
Standard Grant
Development of an In-Silico Research Framework for Accelerating the Translation of Quantitative Photon-Counting Spectral Imaging to the Clinic
开发计算机模拟研究框架,加速定量光子计数光谱成像向临床的转化
- 批准号:
EP/X04095X/1 - 财政年份:2023
- 资助金额:
$ 51.2万 - 项目类别:
Research Grant
Quantitative framework to predict CTEPH surgical outcome from imaging
通过影像学预测 CTEPH 手术结果的定量框架
- 批准号:
10676727 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
Development of a quantitative framework to better understand the natural salinization processes of continental groundwater.
开发定量框架以更好地了解大陆地下水的自然盐化过程。
- 批准号:
RGPIN-2020-04721 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
Discovery Grants Program - Individual
Building a quantitative framework to measure the "scientific value" of fossils
构建衡量化石“科学价值”的量化框架
- 批准号:
NE/X011798/1 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
Research Grant
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10665540 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
A Computational Framework Enabling Virtual Imaging Trials of 3D Quantitative Optoacoustic Tomography Breast Imaging
支持 3D 定量光声断层扫描乳腺成像虚拟成像试验的计算框架
- 批准号:
10367731 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
A novel quantitative risk assessment framework for fractured rock slopes
一种新颖的裂隙岩质边坡定量风险评估框架
- 批准号:
DP220103381 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别:
Discovery Projects
Quantitative framework to predict CTEPH surgical outcome from imaging
通过影像学预测 CTEPH 手术结果的定量框架
- 批准号:
10389736 - 财政年份:2022
- 资助金额:
$ 51.2万 - 项目类别: