CAREER: Spatial Awareness for Machine Perception
职业:机器感知的空间意识
基本信息
- 批准号:2046910
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For many applications in health, security, and robotics, the capability for computers to track objects in video is critical. From autonomous vehicles that reliably avoid obstacles to security cameras that swiftly respond during emergencies, artificial perception systems need to remain accurate during poor visibility situations, such as with cluttered rooms, dark streets, or occluded objects. This integrated research and education project aims to develop machines that are able to spatially sense their visual surroundings, even when the surroundings have low visibility with significant obstructions. On multiple levels, the investigators will furthermore use their integrated approach to advance education in artificial intelligence, such as outreach activities for K-12 students and streamlined curriculums for both undergraduate and graduate education in computer vision.The research program introduces a framework that tightly integrates geometry, motion, and acoustics in order to learn rich spatial representations of natural scenes from unlabeled visual data. The research team will study how learning from the incidental structures of unlabeled videos will cause rich spatial representations to emerge without human supervision. The framework will leverage the propagation of sound through objects to learn visual tracking under occlusion. In other cases, the project will use scene geometry to transfer incidental supervision between camera views in order to learn spatial memory models. A key advantage of the approach is the efficiency to operate on videos that span both large physical spaces and long temporal horizons. Motivated by implicit surfaces in mathematics and graphics, the algorithm will analytically represents videos as continuous functions, which are compact and robustly embed video dynamics in 3D space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于健康、安全和机器人领域的许多应用来说,计算机跟踪视频中的物体的能力至关重要。从可靠地避开障碍物的自动驾驶汽车,到在紧急情况下迅速做出反应的安全摄像头,人工感知系统需要在能见度较低的情况下保持准确,比如杂乱的房间、黑暗的街道或遮挡的物体。这个综合研究和教育项目旨在开发能够在空间上感知其视觉环境的机器,即使周围环境能见度低且有明显障碍物。在多个层面上,研究人员将进一步使用他们的综合方法来推进人工智能教育,例如为K-12学生提供外展活动,并简化计算机视觉本科和研究生教育的课程。该研究项目引入了一个框架,将几何、运动和声学紧密结合在一起,以便从未标记的视觉数据中学习丰富的自然场景空间表示。研究小组将研究如何从未标记视频的附带结构中学习,从而在没有人类监督的情况下产生丰富的空间表征。该框架将利用声音在物体中的传播来学习遮挡下的视觉跟踪。在其他情况下,该项目将使用场景几何来转移相机视图之间的偶然监督,以学习空间记忆模型。这种方法的一个关键优势是,在跨越大的物理空间和长时间视界的视频上操作的效率。该算法以数学和图形中的隐式曲面为动力,将视频解析表示为连续函数,紧凑且鲁棒地嵌入了三维空间中的视频动态。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revealing Occlusions with 4D Neural Fields
- DOI:10.1109/cvpr52688.2022.00302
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Basile Van Hoorick;Purva Tendulkar;Dídac Surís;Dennis Park;Simon Stent;Carl Vondrick
- 通讯作者:Basile Van Hoorick;Purva Tendulkar;Dídac Surís;Dennis Park;Simon Stent;Carl Vondrick
Tracking Through Containers and Occluders in the Wild
- DOI:10.1109/cvpr52729.2023.01326
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Basile Van Hoorick;P. Tokmakov;Simon Stent;Jie Li;Carl Vondrick
- 通讯作者:Basile Van Hoorick;P. Tokmakov;Simon Stent;Jie Li;Carl Vondrick
What You Can Reconstruct from a Shadow
你可以从阴影中重建什么
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ruoshi Liu;Sachit Menon;Chengzhi Mao;Dennis Park;Simon Stent;Carl Vondrick
- 通讯作者:Carl Vondrick
Humans as Light Bulbs: 3D Human Reconstruction from Thermal Reflection
- DOI:10.1109/cvpr52729.2023.01206
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Ruoshi Liu;Carl Vondrick
- 通讯作者:Ruoshi Liu;Carl Vondrick
Real-Time Neural Voice Camouflage
- DOI:
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Mia Chiquier;Chengzhi Mao;Carl Vondrick
- 通讯作者:Mia Chiquier;Chengzhi Mao;Carl Vondrick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Vondrick其他文献
Seeing Science: Inquiry-Based Learning at Home Through Mobile Messaging System
看到科学:通过移动消息系统在家进行探究式学习
- DOI:
10.1145/3628516.3659396 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
T. Fuhrmann;Marina A Lemee;Jonathan Pang;Je Seung You;Lydia B. Chilton;Carl Vondrick;Paulo Blikstein - 通讯作者:
Paulo Blikstein
What’s Missing From Self-Supervised Representation Learning?
自监督表征学习缺少什么?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Dave Epstein;Yiliang Shi;Eugene Wu;Carl Vondrick - 通讯作者:
Carl Vondrick
Shadows Shed Light on 3D Objects
阴影照亮 3D 物体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ruoshi Liu;Sachit Menon;Chengzhi Mao;Dennis Park;Simon Stent;Carl Vondrick - 通讯作者:
Carl Vondrick
Visual Classification via Description from Large Language Models
通过大型语言模型的描述进行视觉分类
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sachit Menon;Carl Vondrick - 通讯作者:
Carl Vondrick
EraseDraw: Learning to Draw Step-by-Step via Erasing Objects from Images
EraseDraw:通过从图像中删除对象来学习逐步绘图
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Alper Canberk;Maksym Bondarenko;Ege Ozguroglu;Ruoshi Liu;Carl Vondrick - 通讯作者:
Carl Vondrick
Carl Vondrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carl Vondrick', 18)}}的其他基金
CRII: RI: Learning Predictive Representations from Unlabeled Video
CRII:RI:从未标记的视频中学习预测表示
- 批准号:
1850069 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NRI: FND: Learning Visual Dynamics from Interaction
NRI:FND:从交互中学习视觉动力学
- 批准号:
1925157 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
- 批准号:52368007
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
- 批准号:51908258
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving the Spatial Awareness of Virtual Agents in Games
提高游戏中虚拟代理的空间意识
- 批准号:
RGPIN-2019-05213 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual
A Culturally Relevant Approach to Spatial Computational Thinking Skills and Career Awareness through an Immersive Virtual Environment
通过沉浸式虚拟环境实现空间计算思维技能和职业意识的文化相关方法
- 批准号:
2148733 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
A Culturally Relevant Approach to Spatial Computational Thinking Skills and Career Awareness through an Immersive Virtual Environment
通过沉浸式虚拟环境实现空间计算思维技能和职业意识的文化相关方法
- 批准号:
2148732 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
FollowPV - Developing autonomous unmanned aerial vehicles with spatial awareness for improved image quality from solar farm inspections
FollowPV - 开发具有空间感知能力的自主无人机,以提高太阳能发电场检查的图像质量
- 批准号:
98378 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Collaborative R&D
Improving the Spatial Awareness of Virtual Agents in Games
提高游戏中虚拟代理的空间意识
- 批准号:
RGPIN-2019-05213 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual
Rapid information integration in support of situational awareness and spatial behaviour
快速信息集成支持态势感知和空间行为
- 批准号:
2598935 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Studentship
Exploiting the Symmetry of Spatial Awareness for 21st Century Automation
利用空间意识的对称性实现 21 世纪自动化
- 批准号:
DP210102607 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Discovery Projects
Improving the Spatial Awareness of Virtual Agents in Games
提高游戏中虚拟代理的空间意识
- 批准号:
RGPIN-2019-05213 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual
Six-year Elementary School Curriculum Development in Programming Education that also Fosters Spatial Awareness
六年制小学编程教育课程开发同时培养空间意识
- 批准号:
19K03166 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the Spatial Awareness of Virtual Agents in Games
提高游戏中虚拟代理的空间意识
- 批准号:
RGPIN-2019-05213 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




