NRI: FND: Learning Visual Dynamics from Interaction
NRI:FND:从交互中学习视觉动力学
基本信息
- 批准号:1925157
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies robots that utilize the nearby and available physical objects to perform tasks, such as building a bridge out of miscellaneous rubble in a disaster area. Resourceful robots have the potential to enable many new applications in emergency response, healthcare, and manufacturing, which will improve the welfare, security, and efficiency of the overall population. The research investigates how the patterns between multiple senses, such as vision, sound, and touch, will help teach the robot to solve interaction tasks without needing a human teacher, which is expected to improve the flexibility and versatility of autonomous robots. The project will provide research and educational opportunities for both graduate and undergraduate students in computer science and mechanical engineering. Outcomes from this research will translate into new educational materials in computer vision, machine learning, and robotics. This research investigates robots that interact with realistic environments in order to learn reusable representations for navigation and manipulation tasks. While there has been significant advancements leveraging machine learning for computer vision and robotics problems, a central challenge in both fields is generalizing to the realistic complexity and diversity of the physical world. Although simulation has proved instrumental in developing platforms for machine interaction, the unconstrained world is vast, making it computationally difficult to simulate. Instead, the investigators aim to capitalize on the inherent structure of physical environments through the natural synchronization of modalities and context to efficiently learn self-supervised representations and policies for interaction with unconstrained environments. The investigators also plan several evaluations to analyze the generalization capabilities of such algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究利用附近可用的物理物体执行任务的机器人,例如在灾区用杂乱的瓦砾建造一座桥。足智多谋的机器人具有在应急响应、医疗保健和制造业中实现许多新应用的潜力,这将提高整个人口的福利、安全和效率。这项研究调查了视觉、声音和触觉等多种感官之间的模式如何帮助教机器人在不需要人类教师的情况下解决交互任务,这有望提高自主机器人的灵活性和多功能性。该项目将为计算机科学和机械工程的研究生和本科生提供研究和教育机会。这项研究的结果将转化为计算机视觉、机器学习和机器人学的新教材。这项研究调查了与现实环境交互的机器人,以便学习导航和操作任务的可重复使用的表示法。虽然利用机器学习解决计算机视觉和机器人问题已经取得了重大进展,但这两个领域的一个核心挑战是将其推广到物理世界的现实复杂性和多样性。尽管模拟已被证明有助于开发机器交互的平台,但不受约束的世界是广阔的,这使得模拟在计算上很困难。相反,研究人员的目标是通过模态和上下文的自然同步来利用物理环境的内在结构,以有效地学习自我监督的表示法和策略,以便与不受限制的环境进行交互。调查人员还计划进行几次评估,以分析此类算法的泛化能力。这一裁决反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SurfsUp: Learning Fluid Simulation for Novel Surfaces
- DOI:10.1109/iccv51070.2023.01308
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Arjun Mani;I. Chandratreya;Elliot Creager;Carl Vondrick;R. Zemel
- 通讯作者:Arjun Mani;I. Chandratreya;Elliot Creager;Carl Vondrick;R. Zemel
Beyond Categorical Label Representations for Image Classification
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Boyuan Chen-;Yu Li;Sunand Raghupathi;H. Lipson
- 通讯作者:Boyuan Chen-;Yu Li;Sunand Raghupathi;H. Lipson
Smile Like You Mean It: Driving Animatronic Robotic Face with Learned Models
- DOI:10.1109/icra48506.2021.9560797
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Boyuan Chen-;Yuhang Hu;Lianfeng Li;S. Cummings;Hod Lipson
- 通讯作者:Boyuan Chen-;Yuhang Hu;Lianfeng Li;S. Cummings;Hod Lipson
Muscles in Action
- DOI:10.1109/iccv51070.2023.02019
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Mia Chiquier;Carl Vondrick
- 通讯作者:Mia Chiquier;Carl Vondrick
Learning the Predictability of the Future
- DOI:10.1109/cvpr46437.2021.01242
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:D'idac Sur'is;Ruoshi Liu;Carl Vondrick
- 通讯作者:D'idac Sur'is;Ruoshi Liu;Carl Vondrick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Vondrick其他文献
Seeing Science: Inquiry-Based Learning at Home Through Mobile Messaging System
看到科学:通过移动消息系统在家进行探究式学习
- DOI:
10.1145/3628516.3659396 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
T. Fuhrmann;Marina A Lemee;Jonathan Pang;Je Seung You;Lydia B. Chilton;Carl Vondrick;Paulo Blikstein - 通讯作者:
Paulo Blikstein
What’s Missing From Self-Supervised Representation Learning?
自监督表征学习缺少什么?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Dave Epstein;Yiliang Shi;Eugene Wu;Carl Vondrick - 通讯作者:
Carl Vondrick
Shadows Shed Light on 3D Objects
阴影照亮 3D 物体
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ruoshi Liu;Sachit Menon;Chengzhi Mao;Dennis Park;Simon Stent;Carl Vondrick - 通讯作者:
Carl Vondrick
Visual Classification via Description from Large Language Models
通过大型语言模型的描述进行视觉分类
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Sachit Menon;Carl Vondrick - 通讯作者:
Carl Vondrick
EraseDraw: Learning to Draw Step-by-Step via Erasing Objects from Images
EraseDraw:通过从图像中删除对象来学习逐步绘图
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Alper Canberk;Maksym Bondarenko;Ege Ozguroglu;Ruoshi Liu;Carl Vondrick - 通讯作者:
Carl Vondrick
Carl Vondrick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carl Vondrick', 18)}}的其他基金
CAREER: Spatial Awareness for Machine Perception
职业:机器感知的空间意识
- 批准号:
2046910 - 财政年份:2021
- 资助金额:
$ 75万 - 项目类别:
Continuing Grant
CRII: RI: Learning Predictive Representations from Unlabeled Video
CRII:RI:从未标记的视频中学习预测表示
- 批准号:
1850069 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似国自然基金
Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
- 批准号:31670112
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
NRI: FND: Coordinating and Incorporating Trust in Teams of Humans and Robots with Multi-Robot Reinforcement Learning
NRI:FND:通过多机器人强化学习协调和整合人类和机器人团队的信任
- 批准号:
2024790 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: A Formal Methods Approach to Safe, Composable, and Distributed Reinforcement Learning for co-Robots
NRI:FND:协作机器人安全、可组合和分布式强化学习的形式化方法
- 批准号:
2024606 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: The Robotic Rehab Gym: Specialized co-robot trainers working with multiple human trainees for optimal learning outcomes
NRI:FND:机器人康复健身房:专业协作机器人培训师与多名人类受训者合作以获得最佳学习成果
- 批准号:
2024813 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Intelligent Co-robots for Complex Welding Manufacturing through Learning and Generalization of Welders Capabilities
NRI:FND:通过学习和推广焊工能力实现复杂焊接制造的智能协作机器人
- 批准号:
2024614 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
Collaborative Research: NRI: FND: Learning Graph Neural Networks for Multi-Object Manipulation
合作研究:NRI:FND:学习多对象操作的图神经网络
- 批准号:
2024778 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Navigation, Learning, and Collaboration in Fluids with Application to Ubiquitous Marine Co-Robots
NRI:FND:流体中的协作导航、学习和协作及其在无处不在的海洋协作机器人中的应用
- 批准号:
2024928 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
- 批准号:
2024878 - 财政年份:2020
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Robust Learning of Sequential Motion from Human Demonstrations to Enable Robot-Guided Exercise Training
NRI:FND:从人体演示中稳健地学习顺序运动,以实现机器人引导的运动训练
- 批准号:
1830597 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Robust Grasping by Integrating Machine Learning with Physical Models
NRI:FND:通过将机器学习与物理模型相结合实现鲁棒抓取
- 批准号:
1924984 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NRI: FND: Improving Robot Learning from Feedback and Demonstration using Natural Language
NRI:FND:使用自然语言通过反馈和演示改进机器人学习
- 批准号:
1925082 - 财政年份:2019
- 资助金额:
$ 75万 - 项目类别:
Standard Grant