CAREER: Collective mechanics, particle transport and morphological adaptation in living multiphase matter: from mechanisms to the control of microbial swarms and films

职业:活多相物质中的集体力学、粒子输运和形态适应:从微生物群和薄膜的机制到控制

基本信息

  • 批准号:
    2047210
  • 负责人:
  • 金额:
    $ 52.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

This CAREER award will support an integrated research and education plan to study and model the formation and evolution of living multiphase materials - microbial swarms and films. Bacterial and fungal colonies constitute a significant fraction of the biomass on earth. These organisms cause more than two-thirds of human disease including most hospital-acquired infections. Bacteria and fungi typically colonize surfaces and tissue by forming rapidly spreading multicellular swarms and growing fibrous films. The goal of this research is to understand the mechanisms by which these form and to quantifying emergent properties of the composite. The knowledge gained can inspire new technologies to control bacterial and fungal infections in physiologically relevant settings. The research team will investigate the fundamental physical and biochemical mechanisms that underlie formation, growth, and adaptability in microbial swarms and films. The team will use the bacteria Serratia marcescens and Escherichia coli, and the fungus Candida albicans as model experimental systems. Experimental data will be used to develop and test analytical theories and numerical models to identify and understand the mechanisms involved. Insights obtained in the research will be useful in several fields including tissue engineering, soft matter, swarm robotics, and microbiology. The award will also enhance undergraduate and graduate bioengineering curricula through the design of new courses with both wet and dry laboratory components based on the proposed research. The research team will also create a series of customizable, standalone and modular graphics and visualization heavy “SynLab” toolkits and applications inspired by this research. These will be implemented in K- 12 classrooms to motivate students toward STEM careers. The award will enhance education, contribute to community directed outreach, and provide research opportunities for undergraduate and graduate students, especially those from underrepresented groups, including American Indian youth in the Central Valley region of California. Bacteria and fungi cause more than two-thirds of human infections, separately and sometimes as coexisting communities. In the infectious phase, these microbes colonize surfaces by forming rapidly spreading multicellular swarms and films. These living multiphase composites, while composed of independent agents (units), exhibit bulk macroscale properties, and remarkable collective response and adaptations. There are significant gaps in our understanding of how biomechanical and physicochemical mechanisms initiate, develop and stabilize such collective response and composite properties. This project aims to study these fundamental questions through a comprehensive and integrated research, general education and community-engaged outreach program. The research plan builds on the following foundational hypothesis: active multi-scale multiphase frameworks provide a novel, complete and insightful means to interrogate, analyze and understand microbial swarms and films. The PI and his group will combine experiments on the bacteria Serratia marcescens and Escherichia coli, and the fungus Candida albicans, with multiphase continuum theories and stochastic agent-based simulations to understand the collective mechanics, particle transport and morphological adaptation in collectively moving swarms and rapidly growing fungal films. The specific aims are to: 1) interrogate and understand how micro-scale mechanics and transport, cell-cell interactions, and physicochemical interactions control the onset of collective multicellular swarms and films; 2) track evolution of mesoscale spatiotemporal properties and morphology in these composites and quantify any adaptations in response to external flow, chemical, and mechanical perturbations; 3) synthesize experiments with first-principles continuum theories, minimal models and stochastic simulations to identify physical mechanisms underlying the stability of bacteria/fungal microbiomes; 4) significantly enhance undergraduate and graduate bioengineering curricula by incorporating dry and wet laboratory components; 5) create a series of customizable modular graphics based standalone applications inspired by this research; and 6) provide research opportunities for underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个职业奖将支持一个综合的研究和教育计划,以研究和模拟生物多相材料的形成和演变-微生物群和薄膜。细菌和真菌菌落构成地球上生物量的重要部分。 这些微生物引起超过三分之二的人类疾病,包括大多数医院获得性感染。细菌和真菌通常通过形成快速扩散的多细胞群和生长的纤维膜来定殖表面和组织。本研究的目的是了解这些形成的机制,并量化复合材料的涌现特性。 所获得的知识可以激发新技术,以控制生理相关环境中的细菌和真菌感染。该研究小组将研究微生物群和膜的形成,生长和适应性的基本物理和生化机制。该团队将使用细菌粘质沙雷氏菌和大肠杆菌,以及真菌白色念珠菌作为模型实验系统。实验数据将用于开发和测试分析理论和数值模型,以确定和理解所涉及的机制。在研究中获得的见解将在几个领域,包括组织工程,软物质,群机器人和微生物学有用。该奖项还将加强本科生和研究生的生物工程课程,通过设计新的课程与湿和干实验室组件的基础上拟议的研究。该研究团队还将创建一系列可定制的,独立的和模块化的图形和可视化重型“SynLab”工具包和应用程序的灵感来自这项研究。这些将在K- 12教室中实施,以激励学生从事STEM职业。该奖项将加强教育,促进社区指导的推广,并为本科生和研究生提供研究机会,特别是那些来自代表性不足的群体,包括加州中央谷地区的美国印第安青年。 超过三分之二的人类感染是由细菌和真菌引起的,它们分别存在,有时是共存的群落。在感染阶段,这些微生物通过形成快速扩散的多细胞群和膜来定殖表面。这些活的多相复合材料,而独立的代理人(单位),表现出大规模的性能,显着的集体反应和适应。我们对生物力学和物理化学机制如何启动、发展和稳定这种集体反应和复合性质的理解存在重大差距。该项目旨在通过全面和综合的研究,普通教育和社区参与的外展计划来研究这些基本问题。该研究计划建立在以下基本假设的基础上:主动多尺度多相框架提供了一种新颖,完整和有见地的手段来询问,分析和理解微生物群和电影。PI和他的团队将联合收割机结合细菌粘质沙雷氏菌和大肠杆菌,真菌白色念珠菌的实验,多相连续理论和随机代理为基础的模拟,以了解集体力学,粒子运输和形态适应集体移动的群体和快速增长的真菌膜。具体目标是:1)询问和理解微尺度力学和运输、细胞-细胞相互作用和物理化学相互作用如何控制集体多细胞群和膜的发生; 2)跟踪这些复合材料中的中尺度时空性质和形态的演变,并量化响应于外部流动、化学和机械扰动的任何适应; 3)综合第一性原理连续统理论、最小模型和随机模拟的实验,以确定细菌/真菌微生物组稳定性的物理机制; 4)通过结合干实验室和湿实验室组件来显著增强本科生和研究生生物工程课程; 5)创建一系列受本研究启发的基于可定制模块化图形的独立应用程序; 6)为代表性不足的学生提供研究机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ambient Fluid Rheology Modulates Oscillatory Instabilities in Filament-Motor Systems
环境流体流变学调节灯丝电机系统中的振荡不稳定性
  • DOI:
    10.3389/fphy.2022.895536
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Tamayo, Joshua;Mishra, Anupam;Gopinath, Arvind
  • 通讯作者:
    Gopinath, Arvind
Glycosaminoglycans and glycoproteins influence the elastic response of synovial fluid nanofilms on model oxide surfaces
  • DOI:
    10.1016/j.colsurfb.2022.112407
  • 发表时间:
    2022-02-15
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Mann,Amar S.;Smith,Ariell M.;Eguiluz,Roberto C. Andresen
  • 通讯作者:
    Eguiluz,Roberto C. Andresen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arvind Gopinath其他文献

Design and characterization of protein-based, pH-responsive hydrogels with potential biomedical applications
  • DOI:
    10.1016/j.bpj.2022.11.354
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Eduardo A. Gaspar-Morales;Anthony W. Waterston;Pedro Diaz-Parga;Ariell M. Smith;Roberto C. Andresen Eguiluz;Arvind Gopinath;Eva de Alba
  • 通讯作者:
    Eva de Alba
Elastic interactions compete with persistent cell motility to drive durotaxis
  • DOI:
    10.1016/j.bpj.2024.09.021
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Subhaya Bose;Haiqin Wang;Xinpeng Xu;Arvind Gopinath;Kinjal Dasbiswas
  • 通讯作者:
    Kinjal Dasbiswas

Arvind Gopinath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arvind Gopinath', 18)}}的其他基金

Collaborative Research: Bacteria surface sensing and biofilm development
合作研究:细菌表面传感和生物膜开发
  • 批准号:
    2026782
  • 财政年份:
    2020
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Standard Grant

相似海外基金

Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
  • 批准号:
    10751722
  • 财政年份:
    2023
  • 资助金额:
    $ 52.59万
  • 项目类别:
Integrative biophysical modeling for collective tissue mechanics
集体组织力学的综合生物物理建模
  • 批准号:
    10711311
  • 财政年份:
    2023
  • 资助金额:
    $ 52.59万
  • 项目类别:
Contribution of cell mechanics in promoting collective behavior for supracellular migration
细胞力学在促进超细胞迁移集体行为中的贡献
  • 批准号:
    10680022
  • 财政年份:
    2023
  • 资助金额:
    $ 52.59万
  • 项目类别:
Leader cell development and function in Breast Tumor Collective Migration
乳腺肿瘤集体迁移中领导细胞的发育和功能
  • 批准号:
    10618305
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
Leader cell development and function in Breast Tumor Collective Migration
乳腺肿瘤集体迁移中领导细胞的发育和功能
  • 批准号:
    10818106
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
Chemo-Mechanical Feedback between CAFs, Leader Cells, and the Extracellular Microenvironment Regulates Leader Cell Regulated Collective Cell Migration
CAF、前导细胞和细胞外微环境之间的化学机械反馈调节前导细胞调节集体细胞迁移
  • 批准号:
    10537168
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
Leader cell development and function in Breast Tumor Collective Migration
乳腺肿瘤集体迁移中领导细胞的发育和功能
  • 批准号:
    10446803
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
Collective mechanics and regulation of mitotic kinesins for spindle assembly
纺锤体组装有丝分裂驱动蛋白的集体力学和调节
  • 批准号:
    22H02590
  • 财政年份:
    2022
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: In Vitro Epithelial Lubrication: Collective Motion, Mechanics, and Fluid Transport
合作研究:体外上皮润滑:集体运动、力学和流体传输
  • 批准号:
    2104441
  • 财政年份:
    2021
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Standard Grant
Roles of tight junctions in integrative control of cell mechanics in collective cell motility
紧密连接在细胞集体运动中细胞力学综合控制中的作用
  • 批准号:
    21K15095
  • 财政年份:
    2021
  • 资助金额:
    $ 52.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了