CAREER: Towards Efficient Accelerated Cloud Data Centers

职业:迈向高效加速云数据中心

基本信息

  • 批准号:
    2047521
  • 负责人:
  • 金额:
    $ 51.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Emerging large-scale compute-intensive applications, such as machine learning and big data analytics, have led to the wide-spread adoption of compute accelerators, such as Graphical Processing Units (GPUs), in cloud data centers. However, the existing cloud management software stack introduces many layers of abstraction that strip away application characteristics and hardware architectural details leading to inefficient and uncoordinated cloud management policies. This can lead to slow down of application performance and under-utilization of hardware resources, which ultimately impacts the data center's total cost of ownership. This project will design efficient accelerated cloud data centers that are performance-efficient, resource-efficient, and cost-efficient. The planned research has three main goals: (1) develop software frameworks to measure and identify the causes of inefficiencies in accelerated cloud data centers, (2) design inter-accelerator communication-aware cloud management policies, and (3) design accelerator-assisted interconnect topologies.The success of this project can improve application performance, improve hardware resource utilization, and reduce energy consumption; leading to greener data centers and reduced carbon footprint. In addition, this project will enable data centers to cost-efficiently scale computational power to keep pace with the growing societal demands of emerging machine learning and artificial intelligence applications. The tools and frameworks developed in this project will be made publicly available to facilitate the efficient integration of compute accelerators in cloud data centers. These new tools and frameworks will form the foundation for new course development, undergraduate research opportunities, and outreach efforts to train and prepare a new generation of engineers who will utilize compute accelerators and cloud resources as a first-class design choice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的大规模计算密集型应用,如机器学习和大数据分析,导致云数据中心广泛采用计算加速器,如图形处理单元(GPU)。然而,现有的云管理软件堆栈引入了许多抽象层,剥离了应用程序特征和硬件架构细节,导致了低效和不协调的云管理策略。这可能会导致应用程序性能下降和硬件资源利用不足,最终影响数据中心的总拥有成本。该项目将设计高效的加速云数据中心,具有性能效率、资源效率和成本效益。计划中的研究有三个主要目标:(1)开发软件框架来测量和识别加速云数据中心效率低下的原因,(2)设计加速器间通信感知的云管理策略,(3)设计加速器辅助的互联拓扑。该项目的成功可以提高应用程序性能,提高硬件资源利用率,降低能耗;导致更绿色的数据中心和减少碳足迹。此外,该项目将使数据中心能够经济高效地扩展计算能力,以跟上新兴机器学习和人工智能应用日益增长的社会需求。该项目中开发的工具和框架将公开提供,以促进云数据中心中计算加速器的高效集成。这些新的工具和框架将为新课程开发、本科研究机会以及培养和培养新一代工程师的外展工作奠定基础,这些工程师将把计算加速器和云资源作为一流的设计选择。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
WattWiser: Power & Resource-Efficient Scheduling for Multi-Model Multi-GPU Inference Servers
WattWiser:电源
MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Wong其他文献

Emergency angio-embolisation in the operating theatre for trauma patients using the C-Arm digital subtraction angiography.
使用 C 臂数字减影血管造影在手术室对创伤患者进行紧急血管栓塞。
  • DOI:
    10.1016/j.injury.2011.01.026
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    L. Teo;S. Punamiya;C. Chai;K. T. Go;Y. Yeo;Daniel Wong;V. Appasamy;M. Chiu
  • 通讯作者:
    M. Chiu
PAVER
摊铺机
MP04-11 CORRELATION OF MRI PROSTATE VOLUME WITH SERUM PROSTATE-SPECIFIC ANTIGEN IN MEN WITH NEGATIVE STANDARD AND MRI-FUSION BIOPSIES
  • DOI:
    10.1016/j.juro.2018.02.161
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nabeel Shakir;Niccolo Passoni;Daniel Wong;Samuel Gold;Graham Hale;Kareem Rayn;Joseph Baiocco;Jonathan Bloom;Vladimir Valero;Maria Merino;Baris Turkbey;Peter Choyke;Bradford Wood;Peter Pinto;Daniel Costa;Claus Roehrborn
  • 通讯作者:
    Claus Roehrborn
Poster 205: Ellipse vs. Tracing: What Method do you Use to Measure a Median Nerve Cross-sectional Area Using Ultrasound?
  • DOI:
    10.1016/j.pmrj.2009.08.226
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Roderick N. Sembrano;Monica Carrion-Jones;Erwin Manalo;Ann Nunez;Chase Stocks;Richard Weiss;Daniel Wong
  • 通讯作者:
    Daniel Wong
Modernised approaches to pathology teaching at the university of western australia in a large class, small group learning environment
  • DOI:
    10.1097/01.pat.0000443659.69710.93
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kimberley Roehrig;Daniel Wong;Gary Hoffman;Wendy Erber
  • 通讯作者:
    Wendy Erber

Daniel Wong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Wong', 18)}}的其他基金

Travel: NSF Student Travel Grant for the 2023 HPCA/CGO/PPoPP Symposia (HPCA/CGO/PPoPP 2023)
旅行:2023 年 HPCA/CGO/PPoPP 研讨会的 NSF 学生旅行补助金 (HPCA/CGO/PPoPP 2023)
  • 批准号:
    2305628
  • 财政年份:
    2023
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Standard Grant
DESC: Type I: Minimizing Carbon Footprint by Co-designing Data Centers with Sustainable Power Grids
DESC:第一类:通过与可持续电网共同设计数据中心来最大限度地减少碳足迹
  • 批准号:
    2324940
  • 财政年份:
    2023
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Real-time Energy-elastic GPUs for Embedded Autonomous Systems
CNS 核心:中:用于嵌入式自治系统的实时能量弹性 GPU
  • 批准号:
    1955650
  • 财政年份:
    2020
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
SHF: Small: Energy Saving in Heterogeneous Data Centers
SHF:小型:异构数据中心的节能
  • 批准号:
    1815643
  • 财政年份:
    2018
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
  • 批准号:
    2338683
  • 财政年份:
    2024
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
  • 批准号:
    2340722
  • 财政年份:
    2024
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards 3D Omnidirectional and Efficient Wireless Power Transfer with Controlled 2D Near-Field Coil Array
职业:利用受控 2D 近场线圈阵列实现 3D 全向高效无线功率传输
  • 批准号:
    2338697
  • 财政年份:
    2024
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient In-storage Indexing
职业:实现高效的存储内索引
  • 批准号:
    2338457
  • 财政年份:
    2024
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient Cryptography for Next Generation Applications
职业:面向下一代应用的高效密码学
  • 批准号:
    2402031
  • 财政年份:
    2023
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
  • 批准号:
    2401481
  • 财政年份:
    2023
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient and Scalable Zero-Knowledge Proofs
职业:迈向高效且可扩展的零知识证明
  • 批准号:
    2144625
  • 财政年份:
    2022
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient and Fast Hierarchical Federated Learning in Heterogeneous Wireless Edge Networks
职业:在异构无线边缘网络中实现高效快速的分层联邦学习
  • 批准号:
    2145031
  • 财政年份:
    2022
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards Elastic Security with Safe and Efficient Network Security Function Virtualization
职业:通过安全高效的网络安全功能虚拟化迈向弹性安全
  • 批准号:
    2129164
  • 财政年份:
    2021
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Principled Framework for Resilient, Data Efficient and Scalable Reinforcement Learning for Control
职业:建立一个有弹性、数据高效且可扩展的强化学习控制原则框架
  • 批准号:
    2045783
  • 财政年份:
    2021
  • 资助金额:
    $ 51.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了