CAREER: Deep representation learning for exploration and inference in biomedical data
职业:用于生物医学数据探索和推理的深度表示学习
基本信息
- 批准号:2047856
- 负责人:
- 金额:$ 58.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biological systems are inherently complex. Increasingly sophisticated technologies arebeing used in biomedical science in order to make sense of this complexity and to understand theunderlying factors that cause disease. These technologies generate vast amounts of data in manydifferent forms, from changes in how genes and proteins are expressed in individual cells over time,to detailed clinical imaging data on large patient populations and whole genome sequencing studiesacross hundreds of thousands of people. These newly developed datatypes could help uncoverimportant mechanisms and pathways that underpin health and disease. However, there is a largegap between the information contained in these datasets and the ability to extract meaningfulinsights. Here the PI proposes to address this by developing new machine learning approaches basedon mathematical foundations that will allow us to make sense of these complex datasets. The PI will develop deep representation learning techniques that focus on gaining overall insight into thestructures, dynamics, interactions, and predictive features of the data, and will allow specific hypotheses regarding the underlying regulatory mechanisms that drive disease in differentcontexts to derived. The proposal will also involve training a postdoc, graduate student, and mentorship of local high school students. In addition, it will enable the development of an online workshop towidely disseminate knowledge of unsupervised data analysis to a diverse array of participants fromacross the country.This project proposes to advance biomedical data analysis via three main thrusts. The first thrust is focused on forming deep multiscale representations of the data based on data geometry, graph signal processing, and topological concepts, in combination with powerful, deep learning systems. Such representations will allow for exploration of structure and meaningful, predictive abstractions of the data in a scalable fashion. Our second thrust is focused on integrating multiple modalities of data and organizing multitudes of related datasets using optimal transport and generative models to gain insight into entire cohorts of patients or perturbation conditions. Our third thrust is focused on learning high dimensional stochastic dynamics of the data using neural SDE (stochastic differential equation) and graph ODE (ordinary differential equation) networks to gain insight into underlying gene regulatory networks. We apply our approaches in the context of several specific biomedical challenges. Achieving these aims will enable integration and exploration of a large volume of data for explaining underlying regulatory mechanisms and dynamic phenotypic changes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物系统本质上是复杂的。越来越复杂的技术被用于生物医学科学,以理解这种复杂性,并了解导致疾病的潜在因素。这些技术以多种不同的形式产生大量数据,从基因和蛋白质在单个细胞中表达方式随时间的变化,到大型患者群体的详细临床成像数据和数十万人的全基因组测序研究。这些新开发的数据库可以帮助揭示支撑健康和疾病的重要机制和途径。然而,这些数据集中包含的信息与提取有意义见解的能力之间存在很大差距。在这里,PI建议通过开发基于数学基础的新机器学习方法来解决这个问题,这将使我们能够理解这些复杂的数据集。PI将开发深度表征学习技术,专注于全面了解数据的结构,动力学,相互作用和预测特征,并将允许有关在不同背景下驱动疾病的潜在调控机制的特定假设。该提案还将涉及培训一名博士后、研究生和指导当地高中生。此外,该项目还将推动在线研讨会的发展,以便向来自全国各地的各种参与者广泛传播无监督数据分析的知识。该项目提出通过三个主要方面推进生物医学数据分析。第一个重点是基于数据几何、图形信号处理和拓扑概念,结合强大的深度学习系统,形成数据的深度多尺度表示。这种表示将允许以可扩展的方式探索数据的结构和有意义的预测性抽象。我们的第二个重点是整合多种数据模式,并使用最佳传输和生成模型组织大量相关数据集,以深入了解整个患者队列或扰动条件。我们的第三个重点是使用神经网络(随机微分方程)和图形ODE(常微分方程)网络来学习数据的高维随机动力学,以深入了解潜在的基因调控网络。我们在几个特定的生物医学挑战的背景下应用我们的方法。实现这些目标将有助于整合和探索大量数据,以解释潜在的监管机制和动态表型变化。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-view manifold learning of human brain-state trajectories
- DOI:10.1038/s43588-023-00419-0
- 发表时间:2023-03-27
- 期刊:
- 影响因子:0
- 作者:Busch, Erica L.;Huang, Jessie;Turk-Browne, Nicholas B.
- 通讯作者:Turk-Browne, Nicholas B.
Molecular Graph Generation via Geometric Scattering
通过几何散射生成分子图
- DOI:10.48550/arxiv.2110.06241
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dhananjay Bhaskar, Jackson D.
- 通讯作者:Dhananjay Bhaskar, Jackson D.
Time-Inhomogeneous Diffusion Geometry and Topology
时间非均匀扩散几何和拓扑
- DOI:10.1137/21m1462945
- 发表时间:2023
- 期刊:
- 影响因子:3.6
- 作者:Huguet, Guillaume;Tong, Alexander;Rieck, Bastian;Huang, Jessie;Kuchroo, Manik;Hirn, Matthew;Wolf, Guy;Krishnaswamy, Smita
- 通讯作者:Krishnaswamy, Smita
Single-Cell Multi-Modal GAN (scMMGAN) reveals spatial patterns in single-cell data from triple negative breast cancer
单细胞多模态 GAN (scMMGAN) 揭示三阴性乳腺癌单细胞数据的空间模式
- DOI:10.1101/2022.07.04.498732
- 发表时间:2022
- 期刊:
- 影响因子:6.5
- 作者:Matthew Amodio, Scott E
- 通讯作者:Matthew Amodio, Scott E
Neural FIM for learning Fisher Information Metrics from point cloud data
- DOI:10.48550/arxiv.2306.06062
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:O. Fasina;Guilluame Huguet;Alexander Tong;Yanlei Zhang;Guy Wolf;Maximilian Nickel;Ian M. Adelstein;Smita Krishnaswamy
- 通讯作者:O. Fasina;Guilluame Huguet;Alexander Tong;Yanlei Zhang;Guy Wolf;Maximilian Nickel;Ian M. Adelstein;Smita Krishnaswamy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Smita Krishnaswamy其他文献
Guided Generative Protein Design using Regularized Transformers
使用正则化变压器引导生成蛋白质设计
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Egbert Castro;Abhinav Godavarthi;Julian Rubinfien;Kevin B. Givechian;Dhananjay Bhaskar;Smita Krishnaswamy - 通讯作者:
Smita Krishnaswamy
Alternative splicing across the C. elegans nervous system
线虫神经系统中的可变剪接
- DOI:
10.1038/s41467-025-58293-5 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:15.700
- 作者:
Alexis Weinreb;Erdem Varol;Alec Barrett;Rebecca M. McWhirter;Seth R. Taylor;Isabel Courtney;Manasa Basavaraju;Abigail Poff;John A. Tipps;Becca Collings;Smita Krishnaswamy;David M. Miller;Marc Hammarlund - 通讯作者:
Marc Hammarlund
Embedding the single-cell experimental variable state space to reveal manifold structure of drug perturbation effects in breast cancer
嵌入单细胞实验可变状态空间揭示乳腺癌药物扰动效应的多种结构
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
William S. Chen;Nevena Zivanovic;D. V. Dijk;Guy Wolf;B. Bodenmiller;Smita Krishnaswamy - 通讯作者:
Smita Krishnaswamy
Modeling uniquely human gene regulatory function in humanized mice
在人源化小鼠中模拟独特的人类基因调控功能
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
E. Dutrow;Deena Emera;Kristina Yim;Severin Uebbing;Acadia A. Kocher;M. Krenzer;T. Nottoli;Daniel B. Burkhardt;Smita Krishnaswamy;A. Louvi;J. Noonan - 通讯作者:
J. Noonan
Diffusion Curvature for Estimating Local Curvature in High Dimensional Data
用于估计高维数据中局部曲率的扩散曲率
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Dhananjay Bhaskar;Kincaid MacDonald;O. Fasina;Dawson Thomas;Bastian Alexander Rieck;Ian M. Adelstein;Smita Krishnaswamy - 通讯作者:
Smita Krishnaswamy
Smita Krishnaswamy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Smita Krishnaswamy', 18)}}的其他基金
Multiscale data geometric networks for learning representations and dynamics of biological systems
用于学习生物系统表示和动力学的多尺度数据几何网络
- 批准号:
2327211 - 财政年份:2023
- 资助金额:
$ 58.62万 - 项目类别:
Standard Grant
相似国自然基金
基于Deep Unrolling的高分辨近红外二区荧光分子断层成像方法研究
- 批准号:12271434
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于深度森林(Deep Forest)模型的表面增强拉曼光谱分析方法研究
- 批准号:2020A151501709
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:省市级项目
面向Deep Web的数据整合关键技术研究
- 批准号:61872168
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于语义计算的海量Deep Web知识探索机制研究
- 批准号:61272411
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Deep Web数据集成查询结果抽取与整合关键技术研究
- 批准号:61100167
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
面向Deep Web的大规模知识库自动构建方法研究
- 批准号:61170020
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Deep Web敏感聚合信息保护方法研究
- 批准号:61003054
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于逻辑强化学习的Deep Web模式匹配研究
- 批准号:61070122
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
- 批准号:
23K11222 - 财政年份:2023
- 资助金额:
$ 58.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 58.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Cross-modal Deep Learning of Sizzle Representation for Social Media Data
社交媒体数据 Sizzle 表示的跨模态深度学习
- 批准号:
23K11340 - 财政年份:2023
- 资助金额:
$ 58.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
- 批准号:
10712082 - 财政年份:2023
- 资助金额:
$ 58.62万 - 项目类别:
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
- 批准号:
2134274 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
On Learning Deep Representations of Financial Markets, and Applications of Deep and Representation Learning for Portfolio Optimization and Socially Responsible Investing
关于学习金融市场的深度表示,以及深度学习和表示学习在投资组合优化和社会责任投资中的应用
- 批准号:
576229-2022 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
- 批准号:
2212065 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
- 批准号:
2143904 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
- 批准号:
2134178 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Continuing Grant
EAGER: Deep Causal Representation Learning for Generalizable Visual Understanding
EAGER:用于泛化视觉理解的深度因果表示学习
- 批准号:
2236026 - 财政年份:2022
- 资助金额:
$ 58.62万 - 项目类别:
Standard Grant