Topological Quantum Hydrodynamics in Nonmetallic Materials

非金属材料中的拓扑量子流体动力学

基本信息

  • 批准号:
    2049979
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research and education with an aim to unravel hidden physical properties and potential utilities of insulating materials. These materials could be chemically natural or judiciously tailored in an atomic layer-by-layer fashion. The dynamic cooperation among the underlying elementary constituents can result in the effectively knotted geometric entities, such as vortices or magnetic textures that resemble the arrangement of spines on a hedgehog, that spur unexpected physical behavior. In certain natural or engineered systems, an intricate geometric character is already woven into the chemical fabric of the homogeneous material itself. While this may not be directly evident, it can be manifested through exotic physics at the material's boundary. The latter, in turn, can be exploited to control the textured inhomogeneous dynamics in the bulk by electrical, thermal, or optical manipulations on the edges. Ultimately, this research aims at establishing new modalities for classical and quantum information transmission by appropriately designed systems and devices, which can exhibit novel types of (out-of-equilibrium) dynamics and (nonelectrical) signal generation as well as yield hidden functionalities.The topics studied here thus have technological implications, while also offering educational opportunities. The PI's collaboration with materials scientists and engineers will promote new device concepts for efficient nanoscale energy storage and quantum communications. The intersection between topology, quantum transport, and quantum information science also offers a terrific departure point for designing modern courses, research topics for training students and postdocs, as well as educational outreach to schools and the public. The PI will team up with the California NanoSystems Institute to carry out outreach activities to Los Angeles public school district, maintain a theoretical nanoscience component at the UCLA summer internship programs, as well as contribute to the physics fairs that are periodically offered to the public by his department. Beyond UCLA, an international conference will be organized for scientists from developing nations, with a broad scope in topological and quantum phenomena in condensed-matter physics.TECHNICAL SUMMARYThis award supports theoretical research and education to investigate novel modes of information flow and the associated quantum correlations in materials with topological character. The latter is generally associated with bulk-boundary correspondence, and provides control handles on the dynamics and transport processes in the interior of a system through the manipulations and measurements on its boundaries. We are primarily interested in insulating magnetic or superconducting systems, which can exhibit spatially-inhomogeneous order-parameter dynamics not hindered by much dissipation. Topological conservation laws underlying such collective textures, like magnetic/superconducting vorticity in 2D or magnetic hedgehog textures in 3D, offers a hydrodynamic framework for developing a systematic field-theoretic formalism for quantum transport. The topological bulk-boundary relations enable the bias and measure the topological texture flow, either thermoelectrically or optically, offering a fundamentally new way to probe transport in wide classes of nonmetallic media. After developing a microscopic quantum response theory, it will be applied to effective descriptions for ordered, disordered, and critical regimes, with a focus on quantum magnets and spin liquids. Even for ordinary ferromagnets and antiferromagnets, our perspective raises new types of questions for interrogating materials. This becomes even more interesting when the material is already topological at the level of its band structure, as in the quantum Hall phases and topological superconductors. Here, we anticipate two interwoven bulk-boundary features, with the robust edge states dictated by the band-structure topology affording us universal means to bias and control real-space topological textures in the bulk. Low-energy quantum degrees of freedom, which are either naturally associated with the topological features (such as skyrmionic vibrations or Majorana fermions in a vortex core) or artificially implanted (such as nitrogen-vacancy centers in diamond), are then studied in concert with the delocalized collective driven-dissipative dynamics.This project will further our understanding of fundamental properties of correlated quantum materials on three fronts: (i) Through the prism of their novel transport properties based on topological conservation laws (which has so far eluded much attention in solid state); (ii) By tuning an ensemble of individually-accessible quantum bits into strong (electromagnetic) coupling with a topological material, and quantifying the induced entanglement; and (iii) Exploring these questions for a driven-dissipative dynamics, where the non-Hermitian character enriches both the topological properties and the associated quantum correlations. The project thus sets out to offer new general-purpose probes of dynamic properties of correlated materials, with an eye on topology, quantum entanglement, and dissipation, along with the interplay thereof.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持理论研究和教育,旨在揭示绝缘材料的隐藏物理特性和潜在效用。这些材料可以是化学上天然的,也可以是以原子层的方式明智地定制的。基本元素之间的动态合作可以产生有效的几何实体,例如类似于刺猬刺排列的漩涡或磁性纹理,从而激发出意想不到的物理行为。在某些自然或工程系统中,一种复杂的几何特征已经被编织到同质材料本身的化学结构中。虽然这可能不是直接明显的,但它可以通过材料边界的奇异物理学来表现。后者,反过来,可以利用控制纹理的不均匀动力学在散装的电,热,或光学操纵的边缘。最终,本研究旨在通过适当设计的系统和设备建立经典和量子信息传输的新模式,这些系统和设备可以表现出新型的(非平衡)动力学和(非电)信号产生以及产生隐藏的功能。因此,这里研究的主题具有技术意义,同时也提供了教育机会。PI与材料科学家和工程师的合作将促进有效的纳米级能量存储和量子通信的新设备概念。拓扑学、量子输运和量子信息科学之间的交叉也为设计现代课程、培训学生和博士后的研究课题以及对学校和公众的教育推广提供了一个极好的出发点。PI将与加州纳米系统研究所合作,在洛杉矶公立学区开展外展活动,在加州大学洛杉矶分校暑期实习项目中保持理论纳米科学部分,并为他的部门定期向公众提供的物理博览会做出贡献。除了加州大学洛杉矶分校,还将为发展中国家的科学家组织一次国际会议,讨论凝聚态物理学中的拓扑和量子现象。技术总结该奖项支持理论研究和教育,以研究具有拓扑特征的材料中的信息流和相关量子关联的新模式。后者通常与体边界对应相关联,并通过对其边界的操纵和测量来提供对系统内部的动力学和输运过程的控制手柄。我们主要感兴趣的绝缘磁或超导系统,它可以表现出空间不均匀的序参数动力学不受太多的耗散。这种集体纹理的拓扑守恒定律,如2D中的磁/超导涡或3D中的磁刺猬纹理,为量子输运提供了一个系统的场论形式主义的流体动力学框架。拓扑体边界关系使偏见和测量的拓扑纹理流,无论是热电或光学,提供了一个从根本上新的方式来探测在广泛的类非金属介质中的运输。在发展了微观量子响应理论之后,它将被应用于有序,无序和临界状态的有效描述,重点是量子磁体和自旋液体。即使对于普通的铁磁体和反铁磁体,我们的观点也为询问材料提出了新的问题。当材料在其能带结构的水平上已经是拓扑的时,这变得更加有趣,如在量子霍尔相和拓扑超导体中。在这里,我们预计两个交织的散装边界功能,与强大的边缘状态所规定的带结构拓扑结构为我们提供了通用的手段来偏置和控制真实空间的拓扑纹理的散装。低能量量子自由度,这是自然地与拓扑特征(例如涡旋核心中的skyrmionic振动或Majorana费米子)或人工植入(如金刚石中的氮空位中心),然后结合离域集体驱动耗散动力学进行研究。这个项目将在三个方面进一步加深我们对相关量子材料基本性质的理解:(i)通过其基于拓扑守恒定律的新颖输运性质的棱镜(到目前为止,这在固态中还没有引起太多的注意);(ii)通过将可单独访问的量子比特的集合调谐到强的与拓扑材料(电磁)耦合,并量化所诱导的纠缠;(iii)从驱动耗散动力学的角度探讨这些问题,其中非厄米特性质丰富了拓扑性质和相关的量子关联。因此,该项目旨在提供新的通用探测器的相关材料的动态特性,着眼于拓扑结构,量子纠缠和耗散,沿着它们的相互作用。该奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized model of magnon kinetics and subgap magnetic noise
磁振子动力学和亚能隙磁噪声的广义模型
  • DOI:
    10.1103/physrevb.105.184406
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fang, Haocheng;Zhang, Shu;Tserkovnyak, Yaroslav
  • 通讯作者:
    Tserkovnyak, Yaroslav
Flavors of magnetic noise in quantum materials
  • DOI:
    10.1103/physrevb.106.l081122
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shu Zhang;Y. Tserkovnyak
  • 通讯作者:
    Shu Zhang;Y. Tserkovnyak
Bell-state generation for spin qubits via dissipative coupling
通过耗散耦合产生自旋量子位的贝尔态
  • DOI:
    10.1103/physrevb.106.l180406
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zou, Ji;Zhang, Shu;Tserkovnyak, Yaroslav
  • 通讯作者:
    Tserkovnyak, Yaroslav
Quantum Imaging of Magnetic Phase Transitions and Spin Fluctuations in Intrinsic Magnetic Topological Nanoflakes
  • DOI:
    10.1021/acs.nanolett.2c01390
  • 发表时间:
    2022-07-11
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    McLaughlin, Nathan J.;Hu, Chaowei;Du, Chunhui Rita
  • 通讯作者:
    Du, Chunhui Rita
Superfluid transport in quantum spin chains
量子自旋链中的超流体传输
  • DOI:
    10.1103/physrevb.107.085403
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hoffman, Silas;Loss, Daniel;Tserkovnyak, Yaroslav
  • 通讯作者:
    Tserkovnyak, Yaroslav
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yaroslav Tserkovnyak其他文献

Thermal spin power without magnets
无磁体的热自旋功率
  • DOI:
    10.1038/487180a
  • 发表时间:
    2012-07-11
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Tero T. Heikkilä;Yaroslav Tserkovnyak
  • 通讯作者:
    Yaroslav Tserkovnyak
Structural Study on Emergent Ferroelectricity in Perovskite-type Oxides by Synchrotron Radiation X-ray Diffraction
同步辐射X射线衍射研究钙钛矿型氧化物中突现铁电性的结构
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉川貴史;Derek Reitz;伊藤宏陽;巻内崇彦;杉本宜陽;恒川翔;大門俊介;大柳洸一;Rafael Ramos;高橋三郎;塩見雄毅;Yaroslav Tserkovnyak;齊藤英治;Y. Kuroiwa
  • 通讯作者:
    Y. Kuroiwa
An insulator-based transistor
基于绝缘体的晶体管
  • DOI:
    10.1038/nnano.2013.203
  • 发表时间:
    2013-10-04
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Yaroslav Tserkovnyak
  • 通讯作者:
    Yaroslav Tserkovnyak
Magnon-phonon hybridization in thermal spin transport
热自旋输运中的磁振子-声子杂化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉川貴史;Derek Reitz;伊藤宏陽;巻内崇彦;杉本宜陽;恒川翔;大門俊介;大柳洸一;Rafael Ramos;高橋三郎;塩見雄毅;Yaroslav Tserkovnyak;齊藤英治;T. Kikkawa
  • 通讯作者:
    T. Kikkawa
Coherent terahertz spin-wave emission associated with ferrimagnetic domain wall dynamics
与亚铁磁畴壁动力学相关的相干太赫兹自旋波发射
  • DOI:
    10.1103/physrevb.96.100407
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Se-Hyeok Oh;Se Kwon Kim;Dong-Kyu Lee;Gyungchoon Go. Kab-Jin Kim;Teruo Ono;Yaroslav Tserkovnyak;and Kyung-Jin Lee
  • 通讯作者:
    and Kyung-Jin Lee

Yaroslav Tserkovnyak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yaroslav Tserkovnyak', 18)}}的其他基金

2019 Spin Dynamics in Nanostructures: Spin Transport and Dynamics in New Geometries, Materials and Nanostructures
2019 纳米结构中的自旋动力学:新几何、材料和纳米结构中的自旋输运和动力学
  • 批准号:
    1915867
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Quantum soliton hydrodynamics in magnetic insulators
磁绝缘体中的量子孤子流体动力学
  • 批准号:
    1742928
  • 财政年份:
    2018
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Superfluid-inspired reconfigurable magnetic devices
受超流体启发的可重构磁性装置
  • 批准号:
    1810494
  • 财政年份:
    2018
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
CAREER: Spin Transport and Dynamics in Nanostructures
职业:纳米结构中的自旋输运和动力学
  • 批准号:
    0840965
  • 财政年份:
    2009
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hydrodynamics of quantum fluids
量子流体的流体动力学
  • 批准号:
    DP240101033
  • 财政年份:
    2024
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Projects
Pioneering the frontier of quantum hydrodynamics and turbulence
开拓量子流体动力学和湍流的前沿
  • 批准号:
    23K03305
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: An Ultracold Atom Platform for Quantum Hydrodynamics Research and Undergraduate Training in Quantum Technology
LEAPS-MPS:用于量子流体动力学研究和量子技术本科生培训的超冷原子平台
  • 批准号:
    2137848
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrodynamics of quantum matter
量子物质的流体动力学
  • 批准号:
    RGPIN-2020-05842
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity and hydrodynamics: a surprising partnership
量子引力和流体动力学:令人惊讶的合作关系
  • 批准号:
    RGPIN-2021-02941
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
Hydrodynamics of quantum matter
量子物质的流体动力学
  • 批准号:
    RGPAS-2020-00060
  • 财政年份:
    2022
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Hydrodynamics of quantum matter
量子物质的流体动力学
  • 批准号:
    RGPAS-2020-00060
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Quantum transport and hydrodynamics in strongly interacting systems: Symmetries, Quantum criticality and Entanglement
强相互作用系统中的量子输运和流体动力学:对称性、量子临界性和纠缠
  • 批准号:
    RGPIN-2020-07070
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum gravity and hydrodynamics: a surprising partnership
量子引力和流体动力学:令人惊讶的合作关系
  • 批准号:
    RGPIN-2021-02941
  • 财政年份:
    2021
  • 资助金额:
    $ 65万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了