Superfluid-inspired reconfigurable magnetic devices

受超流体启发的可重构磁性装置

基本信息

  • 批准号:
    1810494
  • 负责人:
  • 金额:
    $ 34.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Processing and transporting information are the central tasks in today's age of information. Current devices that perform this task require increasing amount of power. Many modern applications, such as mobile computing, on the other hand, does not have access to large power sources to remain functional. This has created a need to search for alternate means to process and transport information. Superfluidity, that is coherent flow of information in the absence of dissipation, provides an ideal solution to this problem. However, in materials explored so far, the superfluidity has been limited to cryogenic temperatures. Recently, taking advantage of the advancement of efficient electrical and thermal excitation of magnetic materials, phenomena inspired from superfluidity have been proposed to exist in room temperature magnetic materials. The goal of this project is to utilize such superfluid-inspired phenomena to propose and numerically evaluate energy-efficient superfluid-inspired magnetic devices. In particular, the prinicipal investigator will construct novel magnetic analogues of Josephson junctions, which are the building blocks of conventional cryogenic information processing and communication devices. Moreover, exploiting the fact that magnetic materials have inherently long memory and tunable properties, device functionality beyond those possible in conventional Josephson junctions will also be explored. During this project, the principal investigator will train undergraduate and graduate students, in modern materials modelling, for enhancing the United States? science, technology, engineering and math workforce.The proposed research aims at unraveling novel superfluid-inspired magnetic devices by covering aspects-starting from the use of new magnetic materials to designing and benchmarking of application-driven device concepts. For this purpose, the following specific objectives will be pursued: (a) designing novel magnetic insulator-based Josephson junctions which are inspired from superconducting Josephson, (b) developing circuit theory for electrical and thermal bias driven superflow of spin through magnetic Josephson junctions (in close analogy to superconducting Josephson junctions) utilizing the phenomena of spin-orbit and thermomagnonic torques, and (c) using the circuit theory to assemble magnetic Josephson junctions for constructing new class of magnetic devices and benchmarking them for classical to quantum information processing, communication and energy harvesting applications. The last objective takes advantage of the well-developed device concepts based on superconducting Josephson Junctions, which can be mimicked within our proposed magnetic insulating systems. In addition, the proposed magnetic devices (being electrically reconfigurable and nonvolatile) add functionality beyond those existing in superconductor-based devices, such as amenability to beyond von-Neumann in-memory computing architectures. Exploring such device concepts will also form an integral part of the last objective. The proposed approach combines, for the first time, superfluid-based Josephson phenomena with above room temperature ordering of magnets. By tapping into superfluid-like properties of magnets, it opens up completely new avenues to solve the central technical challenge of achieving minimal energy wastage at high operating temperature for the next-generation information processing and communication devices. On a fundamental level, the theoretical program will serve as a unique playground to test and discover new phenomena at the interface of magnetism, superconductivity and caloritronics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
处理和传输信息是当今信息时代的中心任务。执行此任务的当前设备需要增加的功率量。另一方面,诸如移动的计算之类的许多现代应用不能访问大电源以保持功能。这就需要寻找处理和传输信息的替代手段。超流性,即信息在没有耗散的情况下的连贯流动,为这个问题提供了理想的解决方案。然而,在迄今为止探索的材料中,超流性仅限于低温。最近,利用磁性材料的有效电和热激发的进步,已经提出在室温磁性材料中存在超流性激发的现象。该项目的目标是利用这种超流启发的现象,提出和数值评估节能超流启发的磁性装置。特别是,首席研究员将构建约瑟夫森结的新型磁性类似物,这是传统低温信息处理和通信设备的基石。此外,利用磁性材料具有固有的长记忆和可调特性的事实,还将探索超出传统约瑟夫森结的器件功能。在这个项目中,首席研究员将培训本科生和研究生,在现代材料建模,以提高美国?科学,技术,工程和数学的劳动力。拟议的研究旨在揭示新的超流体启发的磁性设备,涵盖方面-从使用新的磁性材料开始,以设计和基准测试的应用驱动的设备概念。为此,将努力实现以下具体目标:(a)受超导约瑟夫森的启发,设计新颖的基于磁绝缘体的约瑟夫森结,(B)发展用于电和热偏置驱动的自旋通过磁约瑟夫森结的超流的电路理论(与超导约瑟夫森结非常相似)利用自旋轨道和热磁力矩的现象,以及(c)使用电路理论来组装磁性约瑟夫森结,以用于构造新类别的磁性装置,并将其基准化用于经典到量子信息处理、通信和能量收集应用。最后一个目标利用了基于超导约瑟夫森结的成熟器件概念,该概念可以在我们提出的磁绝缘系统中模仿。此外,所提出的磁性装置(是电可重新配置的和非易失性的)添加了超出基于超导体的装置中存在的那些功能的功能,诸如对超出冯-诺依曼存储器内计算架构的可适应性。探索这种装置的概念也将构成最后一个目标的一个组成部分。所提出的方法相结合,第一次,超流体为基础的约瑟夫森现象与上述室温有序的磁铁。通过利用磁体的超流体性质,它开辟了全新的途径来解决下一代信息处理和通信设备在高工作温度下实现最小能量浪费的核心技术挑战。在基本层面上,理论项目将作为一个独特的游乐场,测试和发现新的现象,在磁性,超导性和热电子学的接口。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupled spin-charge dynamics in magnetic van der Waals heterostructures
  • DOI:
    10.1103/physrevb.102.094421
  • 发表时间:
    2020-09-18
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Rustagi, Avinash;Solanki, Abhishek Bharatbhai;Upadhyaya, Pramey
  • 通讯作者:
    Upadhyaya, Pramey
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yaroslav Tserkovnyak其他文献

Thermal spin power without magnets
无磁体的热自旋功率
  • DOI:
    10.1038/487180a
  • 发表时间:
    2012-07-11
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Tero T. Heikkilä;Yaroslav Tserkovnyak
  • 通讯作者:
    Yaroslav Tserkovnyak
Structural Study on Emergent Ferroelectricity in Perovskite-type Oxides by Synchrotron Radiation X-ray Diffraction
同步辐射X射线衍射研究钙钛矿型氧化物中突现铁电性的结构
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉川貴史;Derek Reitz;伊藤宏陽;巻内崇彦;杉本宜陽;恒川翔;大門俊介;大柳洸一;Rafael Ramos;高橋三郎;塩見雄毅;Yaroslav Tserkovnyak;齊藤英治;Y. Kuroiwa
  • 通讯作者:
    Y. Kuroiwa
An insulator-based transistor
基于绝缘体的晶体管
  • DOI:
    10.1038/nnano.2013.203
  • 发表时间:
    2013-10-04
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Yaroslav Tserkovnyak
  • 通讯作者:
    Yaroslav Tserkovnyak
Magnon-phonon hybridization in thermal spin transport
热自旋输运中的磁振子-声子杂化
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉川貴史;Derek Reitz;伊藤宏陽;巻内崇彦;杉本宜陽;恒川翔;大門俊介;大柳洸一;Rafael Ramos;高橋三郎;塩見雄毅;Yaroslav Tserkovnyak;齊藤英治;T. Kikkawa
  • 通讯作者:
    T. Kikkawa
Coherent terahertz spin-wave emission associated with ferrimagnetic domain wall dynamics
与亚铁磁畴壁动力学相关的相干太赫兹自旋波发射
  • DOI:
    10.1103/physrevb.96.100407
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Se-Hyeok Oh;Se Kwon Kim;Dong-Kyu Lee;Gyungchoon Go. Kab-Jin Kim;Teruo Ono;Yaroslav Tserkovnyak;and Kyung-Jin Lee
  • 通讯作者:
    and Kyung-Jin Lee

Yaroslav Tserkovnyak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yaroslav Tserkovnyak', 18)}}的其他基金

Topological Quantum Hydrodynamics in Nonmetallic Materials
非金属材料中的拓扑量子流体动力学
  • 批准号:
    2049979
  • 财政年份:
    2021
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
2019 Spin Dynamics in Nanostructures: Spin Transport and Dynamics in New Geometries, Materials and Nanostructures
2019 纳米结构中的自旋动力学:新几何、材料和纳米结构中的自旋输运和动力学
  • 批准号:
    1915867
  • 财政年份:
    2019
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Quantum soliton hydrodynamics in magnetic insulators
磁绝缘体中的量子孤子流体动力学
  • 批准号:
    1742928
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
CAREER: Spin Transport and Dynamics in Nanostructures
职业:纳米结构中的自旋输运和动力学
  • 批准号:
    0840965
  • 财政年份:
    2009
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant

相似国自然基金

多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
  • 批准号:
    10109981
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    EU-Funded
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Discovery Projects
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
  • 批准号:
    EP/Y026284/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了