CAREER: Spin Transport and Dynamics in Nanostructures
职业:纳米结构中的自旋输运和动力学
基本信息
- 批准号:0840965
- 负责人:
- 金额:$ 58.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). TECHNICAL SUMMARYThis CAREER award supports an integrated research and education program on spin transport and related phenomena. Spins play a central role in emergent phases of matter as well as in nonequilibrium phenomena, the latter fueling interest in potential applications to device technologies that exploit the spin of the electron for their operation. The research focuses on several related topics exploring collective and topological properties of spin transport and dynamics, which can be separated into two broad areas: (1) Spin flows and order-parameter dynamics in magnetic materials and nanostructures. Electron spin propagating through a magnetic texture experiences a reactive coupling with the texture. The ensuing ?spin magnetohydrodynamics? produces fascinating phenomena, such as spin torque and reciprocal electromotive gauge fields, which have recently ignited vibrant theoretical as well as experimental activities. The PI will pursue microscopic and phenomenological approaches to dissipative and stochastic magnetoelectronic phenomena, near and far from equilibrium, with particular emphasis on nonlinear current-induced dynamics and instabilities. (2) Spin orbit coupled quantum transport and correlations. The PI will develop a geometric description of spin-transport that includes spin-orbit coupling and will study localization and interference effects in low-dimensional systems, small rings, ring arrays, and Wigner crystals; edge and interfacial properties of spin transport; and semiclassical and quantum spin Hall effects. The PI will also explore more broadly quantum geometric and correlation effects in nanostructures, with a focus on fictitious gauge fields in solid-state media and the interplay between spintronic, magnetic, elastic, and optical phenomena. The PI will collaborate with industry on problems of dissipation, stochastic dynamics, and current-driven instabilities in magnetic systems, as well as new magnetoelectronic device concepts.The education component of this award will build on the already successful outreach program run by the California NanoSystems Institute at the UCLA, which works with Los Angeles public schools, promoting the ideas and excitement of nanoscience and nanotechnology in the Los Angeles unified school district. A theoretical nanoscience component will be developed for the UCLA REU program, offering students a program where they can study, simulate, and optimize magnetoelectronic circuits, while also collaborating with experimentalists and engineers on the UCLA campus. The broad scope of this field is very well suited for designing a new nanoscience course for graduate and advanced undergraduate students in physics and engineering. Collaborations with industry will be initiated on problems of dissipation, stochastic dynamics, and current-driven instabilities in magnetic systems, as well as new magnetoelectronic device concepts. NONTECHNICAL SUMMARYThis CAREER award supports integrated theoretical research and education with an aim to develop a better fundamental understanding of new phenomena that arise because of the intrinsic magnetic properties of an electron in a material. In an important sense an electron is like a tiny spinning top with an electric charge. The spin of the electron is intimately connected to the electron being also like a tiny magnet. The ability to manipulate the electron?s spin enables a new kind of electronic device that utilizes not only the electron charge, like conventional electronic devices, but also its spin. The research supported by this award contributes to the intellectual foundation upon which this new technology called ?spintronics? will rest through theoretical research to understand and control how spin moves through materials and to predict interesting phenomena that arise as a consequence. Spintronic devices may be more energy efficient and may enable continued successful rapid miniaturization of devices accompanied by enhanced performance that has stimulated the American electronics industry for decades.The education component of this award will build on the already successful outreach program run by the California NanoSystems Institute at the UCLA, which works with Los Angeles public schools, promoting the ideas and excitement of nanoscience and nanotechnology in the Los Angeles unified school district. A theoretical nanoscience component will be developed for the UCLA REU program, offering students a program where they can study, simulate, and optimize magnetoelectronic circuits, while also collaborating with experimentalists and engineers on the UCLA campus. The broad scope of this field is very well suited for designing a new nanoscience course for graduate and advanced undergraduate students in physics and engineering. Collaborations with industry will be initiated on problems of dissipation, stochastic dynamics, and current-driven instabilities in magnetic systems, as well as new magnetoelectronic device concepts.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。这个职业奖支持一个关于自旋输运和相关现象的综合研究和教育项目。自旋在物质的涌现相和非平衡现象中都扮演着核心角色,后者激发了人们对利用电子自旋进行操作的设备技术的潜在应用的兴趣。本研究的重点是探索自旋输运和动力学的集体和拓扑性质,可分为两大领域:(1)磁性材料和纳米结构中的自旋流和序参量动力学。电子自旋在磁性结构中传播时,与磁性结构发生反应耦合。接下来呢?自旋磁动流体力学?产生迷人的现象,如自旋扭矩和互反电动势规场,最近点燃了充满活力的理论和实验活动。PI将追求微观和现象学方法耗散和随机磁电现象,接近和远离平衡,特别强调非线性电流诱导的动力学和不稳定性。(2)自旋轨道耦合量子输运及其相关性。PI将开发自旋输运的几何描述,包括自旋轨道耦合,并将研究低维系统、小环、环阵列和维格纳晶体中的定位和干涉效应;自旋输运的边缘和界面性质;以及半经典和量子自旋霍尔效应。PI还将更广泛地探索纳米结构中的量子几何和相关效应,重点是固态介质中的虚拟规范场以及自旋电子、磁性、弹性和光学现象之间的相互作用。PI将与工业界合作解决磁系统中的耗散、随机动力学和电流驱动不稳定性问题,以及新的磁电子器件概念。该奖项的教育部分将建立在加州大学洛杉矶分校的加州纳米系统研究所已经成功的推广项目的基础上,该研究所与洛杉矶的公立学校合作,在洛杉矶联合学区推广纳米科学和纳米技术的想法和激情。将为UCLA REU项目开发一个理论纳米科学组件,为学生提供一个可以研究、模拟和优化磁电子电路的项目,同时也可以与UCLA校园的实验人员和工程师合作。该领域的广泛范围非常适合为物理和工程专业的研究生和高级本科生设计新的纳米科学课程。与工业界的合作将开始在耗散问题,随机动力学,和电流驱动的不稳定性在磁性系统,以及新的磁电子器件概念。该职业奖支持综合理论研究和教育,旨在更好地理解由于材料中电子的固有磁性而产生的新现象。从一个重要的意义上说,电子就像一个带电荷的旋转陀螺。电子的自旋与电子密切相关,电子也像一块微小的磁铁。操纵电子的能力?S自旋使一种新的电子设备成为可能,它不仅像传统的电子设备那样利用电子电荷,而且利用它的自旋。该奖项支持的研究为这项被称为“自旋电子学”的新技术奠定了知识基础。将通过理论研究来理解和控制自旋如何在材料中运动,并预测由此产生的有趣现象。自旋电子设备可能更节能,并可能使设备持续成功地快速小型化,同时提高性能,这已经刺激了美国电子工业几十年。该奖项的教育部分将建立在加州大学洛杉矶分校的加州纳米系统研究所已经成功的推广项目的基础上,该研究所与洛杉矶的公立学校合作,在洛杉矶联合学区推广纳米科学和纳米技术的想法和激情。将为UCLA REU项目开发一个理论纳米科学组件,为学生提供一个可以研究、模拟和优化磁电子电路的项目,同时也可以与UCLA校园的实验人员和工程师合作。该领域的广泛范围非常适合为物理和工程专业的研究生和高级本科生设计新的纳米科学课程。与工业界的合作将开始在耗散问题,随机动力学,和电流驱动的不稳定性在磁性系统,以及新的磁电子器件概念。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yaroslav Tserkovnyak其他文献
Thermal spin power without magnets
无磁体的热自旋功率
- DOI:
10.1038/487180a - 发表时间:
2012-07-11 - 期刊:
- 影响因子:48.500
- 作者:
Tero T. Heikkilä;Yaroslav Tserkovnyak - 通讯作者:
Yaroslav Tserkovnyak
Structural Study on Emergent Ferroelectricity in Perovskite-type Oxides by Synchrotron Radiation X-ray Diffraction
同步辐射X射线衍射研究钙钛矿型氧化物中突现铁电性的结构
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
吉川貴史;Derek Reitz;伊藤宏陽;巻内崇彦;杉本宜陽;恒川翔;大門俊介;大柳洸一;Rafael Ramos;高橋三郎;塩見雄毅;Yaroslav Tserkovnyak;齊藤英治;Y. Kuroiwa - 通讯作者:
Y. Kuroiwa
An insulator-based transistor
基于绝缘体的晶体管
- DOI:
10.1038/nnano.2013.203 - 发表时间:
2013-10-04 - 期刊:
- 影响因子:34.900
- 作者:
Yaroslav Tserkovnyak - 通讯作者:
Yaroslav Tserkovnyak
Magnon-phonon hybridization in thermal spin transport
热自旋输运中的磁振子-声子杂化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
吉川貴史;Derek Reitz;伊藤宏陽;巻内崇彦;杉本宜陽;恒川翔;大門俊介;大柳洸一;Rafael Ramos;高橋三郎;塩見雄毅;Yaroslav Tserkovnyak;齊藤英治;T. Kikkawa - 通讯作者:
T. Kikkawa
Coherent terahertz spin-wave emission associated with ferrimagnetic domain wall dynamics
与亚铁磁畴壁动力学相关的相干太赫兹自旋波发射
- DOI:
10.1103/physrevb.96.100407 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Se-Hyeok Oh;Se Kwon Kim;Dong-Kyu Lee;Gyungchoon Go. Kab-Jin Kim;Teruo Ono;Yaroslav Tserkovnyak;and Kyung-Jin Lee - 通讯作者:
and Kyung-Jin Lee
Yaroslav Tserkovnyak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yaroslav Tserkovnyak', 18)}}的其他基金
Topological Quantum Hydrodynamics in Nonmetallic Materials
非金属材料中的拓扑量子流体动力学
- 批准号:
2049979 - 财政年份:2021
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
2019 Spin Dynamics in Nanostructures: Spin Transport and Dynamics in New Geometries, Materials and Nanostructures
2019 纳米结构中的自旋动力学:新几何、材料和纳米结构中的自旋输运和动力学
- 批准号:
1915867 - 财政年份:2019
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Quantum soliton hydrodynamics in magnetic insulators
磁绝缘体中的量子孤子流体动力学
- 批准号:
1742928 - 财政年份:2018
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Superfluid-inspired reconfigurable magnetic devices
受超流体启发的可重构磁性装置
- 批准号:
1810494 - 财政年份:2018
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
相似国自然基金
SPIN90在幽门螺杆菌空泡毒素VacA致病中的作用及机制研究
- 批准号:82372269
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
解毒方抑制HIF-1α-Exosomal miR-130b-3p-SPIN90介导的巨噬细胞M2型极化改善肝癌免疫抑制微环境的作用机制
- 批准号:82374540
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自旋为1的Spin-Peierls模型的量子相变研究
- 批准号:
- 批准年份:2020
- 资助金额:18 万元
- 项目类别:专项基金项目
Spin-Peierls化合物的分子设计策略及电操控自旋态研究
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
SPIN1正反馈调控Hippo-YAP信号通路促胃癌侵袭转移的机制研究
- 批准号:82060566
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
ETS1-SPIN1-PI3K/Akt网络调控乳腺癌耐药的分子机制研究
- 批准号:81902698
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
紧spin流形上Dirac方程及相关问题的研究
- 批准号:11801499
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Spin-Seebeck效应中多自由度耦合的非平衡动力学研究
- 批准号:11864001
- 批准年份:2018
- 资助金额:42.0 万元
- 项目类别:地区科学基金项目
几乎平坦流形上的Spin结构和配边问题
- 批准号:11801186
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
- 批准号:
2325147 - 财政年份:2024
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225370 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
Quantum magnetic and thermal transport by pi-electron spin
π电子自旋的量子磁和热传输
- 批准号:
23K17906 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
- 批准号:
2316665 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
- 批准号:
2225369 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
BB/X002810/1 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Research Grant
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
- 批准号:
2314465 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant
Magnon-phonon transport in spin insulatronics devices
自旋绝缘电子器件中的磁振子-声子输运
- 批准号:
2885352 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Studentship
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
- 批准号:
2316664 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Continuing Grant
Impact of Radical Polymer Architecture on Spin Transport
自由基聚合物结构对自旋输运的影响
- 批准号:
2321618 - 财政年份:2023
- 资助金额:
$ 58.5万 - 项目类别:
Standard Grant