Scalable Assessment of Urban Earthquake Resilience: A Novel Model-informed Deep Learning Paradigm
城市抗震能力的可扩展评估:一种新的基于模型的深度学习范式
基本信息
- 批准号:2053741
- 负责人:
- 金额:$ 39.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Resilience refers to a system’s ability to efficiently absorb stresses without significant disruption to its functioning. Communities are earthquake resilient if by mitigation and pre-disaster preparation, they achieve the adaptive capacity for maintaining important community functions and recover rapidly following disasters. Community resilience depends on the performance of building clusters (a set of buildings that serve a common function such as housing) and the supporting infrastructure systems. Reliable assessment of the resilience of building clusters is required for quantifying urban functionality and recovery after an earthquake. A fundamental challenge in evaluating earthquake resilience is how to reliably and efficiently estimate probability of damage/failure of buildings with scalability to the urban level for a given earthquake severity. To address this challenge and bridge the existing knowledge gap, this Disaster Resilience Research Grants (DRRG) project will enable assessment of earthquake resilience for large-scale urban building clusters via developing a fundamentally novel and scalable AI-empowered model. The outcome of this project can be used to evaluate earthquake resilience of building clusters in large-scale urban areas. This paradigm facilitates decision making for seismic risk mitigation, informs planning for post disaster response and recovery, and helps improve future building design. Furthermore, in collaboration with a high school physics teacher and following classroom implementation, a mini-unit will be developed on “What does earthquake resilience mean to my community?” which will be available to other science teachers across the country.In order to reliably estimate the seismic demand on a large number of buildings in an urban area under earthquake scenarios, using recorded ground motions (GMs), there is a need for: (a) realistically estimating a GM severity measure (spectral acceleration in this project) variation for buildings with different periods, at different locations and on different soil classes; (b) proper and optimal selection of GM time-histories; and (c) a detailed structural model of buildings for use in numerical simulations. However, it is prohibitively expensive to conduct detailed modeling of a large number of buildings and carrying out nonlinear time history analyses of such models under a large set of GMs probabilistically representing different scenarios. Our project will address this fundamental issue and allow for scalability through the development and implementation of a series of novel AI-empowered algorithms and methods. The overarching goal of this project is to enable the assessment of earthquake resilience for large-scale urban building clusters, through developing a fundamentally novel and scalable model-informed deep learning framework. This will be achieved by: (1) developing a Bayesian deep learning approach to model the variation of spectral acceleration over different periods of vibration, locations, and soil classes, given an earthquake scenario; (2) creating a new unsupervised deep autoencoder-classifier algorithm for ground motion clustering and selection; (3) establishing an innovative model-informed symbolic deep learning method for metamodeling of detailed nonlinear structural models; (4) determining metamodel-enabled fragility functions for representative building models to assess earthquake resilience, accounting for multiple failure criteria and multiple performance objectives; and (5) demonstrating the researched framework for representative buildings in the San Francisco Bay Area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
弹性指的是一个系统在不严重破坏其功能的情况下有效地吸收压力的能力。如果社区通过减灾和灾前准备,实现维持重要社区功能的适应能力,并在灾害发生后迅速恢复,则社区具有抗震力。社区的复原力取决于建筑群(一组服务于住房等共同功能的建筑物)和配套基础设施系统的表现。为了量化城市功能和地震后的恢复,需要对建筑群的弹性进行可靠的评估。评估地震恢复力的一个基本挑战是如何可靠和有效地估计在给定地震严重程度下可伸缩到城市水平的建筑物的损坏/失效概率。为了应对这一挑战并弥合现有的知识差距,这一灾难恢复研究补助金(DRRG)项目将通过开发一种从根本上新颖且可扩展的人工智能授权模型来评估大规模城市建筑群的地震恢复能力。该项目的研究成果可用于大型城市建筑群的抗震能力评估。这一范例有助于减轻地震风险的决策,为灾后响应和恢复规划提供信息,并有助于改进未来的建筑设计。此外,将与一位高中物理老师合作,在课堂上实施后,开发一个关于“抗震力对我的社区意味着什么?”的迷你单元。为了利用记录的地面运动(GM)可靠地估计城市地区大量建筑物在地震情景下的地震需求,需要:(A)真实地估计不同时期、不同地点和不同土壤类别的建筑物的GM严重程度度量(本项目中的谱加速度)变化;(B)GM时程的适当和最佳选择;以及(C)用于数值模拟的建筑物的详细结构模型。然而,要对大量建筑物进行详细建模,并在大量GM概率地表示不同场景的情况下对这些模型进行非线性时程分析,成本高得令人难以接受。我们的项目将解决这一根本问题,并通过开发和实现一系列新颖的人工智能授权算法和方法来实现可伸缩性。该项目的总体目标是通过开发一个从根本上新颖和可扩展的模型信息深度学习框架,使大规模城市建筑群的地震复原力评估成为可能。这将通过以下方法实现:(1)开发贝叶斯深度学习方法来模拟不同振动周期、位置和土壤类别的谱加速度的变化,给定地震情景;(2)创建新的无监督的深部自动编码器-分类器算法,用于地面运动的聚类和选择;(3)建立创新的模型信息符号深度学习方法,用于详细的非线性结构模型的元建模;(4)确定典型建筑模型的元模型使能的易损性函数,以评估地震恢复能力,考虑多个失效准则和多个性能目标;以及(5)展示旧金山湾区代表性建筑的研究框架。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symbolic Neural Networks for Surrogate Modeling of Structures
用于结构代理建模的符号神经网络
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Jia, Yiming;Sasani, Mehrdad;and Sun, Hao
- 通讯作者:and Sun, Hao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mehrdad Sasani其他文献
Convolutional variational autoencoder for Northeast US coastal wind and flood hazard data augmentation
- DOI:
10.1007/s00521-025-11085-w - 发表时间:
2025-03-05 - 期刊:
- 影响因子:4.500
- 作者:
Yiming Jia;Mehrdad Sasani - 通讯作者:
Mehrdad Sasani
Convolutional autoencoder-based ground motion clustering and selection
基于卷积自动编码器的地震动聚类与选取
- DOI:
10.1016/j.soildyn.2025.109240 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.600
- 作者:
Yiming Jia;Mehrdad Sasani - 通讯作者:
Mehrdad Sasani
Mehrdad Sasani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mehrdad Sasani', 18)}}的其他基金
RSB: A Decision and Design Framework for Multi-Hazard Resilient and Sustainable Buildings
RSB:针对多种灾害的弹性和可持续建筑的决策和设计框架
- 批准号:
1455450 - 财政年份:2015
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
NEESR: Near Collapse Performance of Existing Reinforced Concrete Frame Buildings
NEESR:现有钢筋混凝土框架建筑的近倒塌性能
- 批准号:
1135005 - 财政年份:2012
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
CAREER: Multihazard Progressive Collapse Analysis of Structures
职业:结构的多灾害渐进倒塌分析
- 批准号:
0547503 - 财政年份:2006
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
SGER: Implosion of a Building and Progressive Collapse Analysis of Structures
SGER:建筑物的内爆和结构的渐进式倒塌分析
- 批准号:
0601258 - 财政年份:2005
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
相似国自然基金
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
DISES: Integrating environmental justice into urban forest assessment and valuation tools: blueprint for the future
DISES:将环境正义纳入城市森林评估和估价工具:未来蓝图
- 批准号:
2323996 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
DISES: Integrating environmental justice into urban forest assessment and valuation tools: blueprint for the future
DISES:将环境正义纳入城市森林评估和估价工具:未来蓝图
- 批准号:
2206358 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
Implementing the NYU Electronic Patient Visit Assessment (ePVA) for Head and Neck Cancer In Rural and Urban Populations
在农村和城市人群中实施纽约大学电子患者就诊评估 (ePVA) 来评估头颈癌
- 批准号:
10715478 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Comprehensive and high-resolution social impact assessment of urban space using diverse data sources
使用多种数据源对城市空间进行全面、高分辨率的社会影响评估
- 批准号:
22KJ2473 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigation of Ground-Structure Interaction for Improving the Accuracy of Seismic Assessment of Urban Underground Structures
地基结构相互作用研究提高城市地下结构抗震评估精度
- 批准号:
23K04030 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative and Qualitative Assessment of Groundwater Resource using Multiple Tracers in Tropical Urban Area
使用多种示踪剂对热带城市地区地下水资源进行定量和定性评估
- 批准号:
22KJ0395 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Urban Nature-based Solutions: Scenario-based Spatial Assessment of Benefits and Equity Toward SDG11
基于城市自然的解决方案:基于情景的空间评估,实现可持续发展目标 11
- 批准号:
22KF0054 - 财政年份:2023
- 资助金额:
$ 39.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Smart assessment, management and optimisation of urban geothermal resources (SmartRes)
城市地热资源智能评估、管理和优化(SmartRes)
- 批准号:
NE/X005097/1 - 财政年份:2022
- 资助金额:
$ 39.95万 - 项目类别:
Research Grant
Social, ecological, and technological systems (SETS) dynamics assessment for urban resilience to extreme weather events
社会、生态和技术系统 (SETS) 动态评估城市应对极端天气事件的能力
- 批准号:
DGECR-2022-00515 - 财政年份:2022
- 资助金额:
$ 39.95万 - 项目类别:
Discovery Launch Supplement
Social, ecological, and technological systems (SETS) dynamics assessment for urban resilience to extreme weather events
社会、生态和技术系统 (SETS) 动态评估城市应对极端天气事件的能力
- 批准号:
RGPIN-2022-04935 - 财政年份:2022
- 资助金额:
$ 39.95万 - 项目类别:
Discovery Grants Program - Individual